НЕКОТОРЫЕ АСПЕКТЫ, СВЯЗАННЫЕ С ВОДНЫМ ТЕРРОРИЗМОМ

Душкин С.С., Маложон Ю.В.

Национальный университет гражданской защиты Украины

Вода является одним из важнейших элементов внешней среды, необходимым для жизни человека, животных и растений. Она участвует в образовании структурных элементов тела человека, необходима для нормального течения физиологических процессов. Общее содержание воды в человеческом организме составляет около 65 % его массы тела. Если потеря воды не восполняется, то ухудшается самочувствие, падает работоспособность, нарушается терморегуляция и наступает перегрев организма. При уменьшении воды в организме (в % от массы тела) наблюдается:

- 1-5%: жажда, недомогание, экономия движений, потеря аппетита, покраснение кожи, раздражительность, сонливость, повышение температуры тела;
- 6-10%: головокружение, одышка, ощущение ползания «мурашек» в конечностях, уменьшение объема крови, остановка слюноотделения, нечеткая речь, тяжесть ходьбы;
- 11-15%: бред, распухание языка, затруднение глотания, глухота, ослабление зрения, вялость и онемение кожи, болезненное мочеотделение, анурия;
 - 15-20%: от массы тела при температуре воздуха свыше 30 °C;
- 25%: является смертельной при любой температуре является смертельной.

Однако вода может нести и негативное воздействие на организм человека. Она может служить одним из путей передачи возбудителей инфекционных болезней. Солевой состав воды может быть причиной возникновения ряда заболеваний неинфекционного происхождения (гипертоническая болезнь, мочекаменная болезнь).

К болезням, связанным с водой, ВОЗ относит:

- болезни, вызванные микроорганизмами и химическими соединениями, содержащимися в воде, употребляемой для питья;
 - малярию, чьи переносчики связаны с водой;
- легионеллез, передающийся через аэрозоли, содержащие определенные микроорганизмы.

Водным путем могут передаваться:

- возбудители кишечных инфекций: холера, брюшной тиф, паратифы, дизентерия бактериальная, иерсиниозы, кампилобактериозы;
- возбудители вирусных инфекций: инфекционный гепатит, полиомиелит, энтеровирусы, аденовирусы;
 - зоонозы: желтушный лептоспироз, безжелтушный лептоспироз, туляремия;
- простейшие: амебы (амебная дизентерия), лямблии, балантидии, криптоспоридии;
 - гельминтозы: аскаридоз, власоглав, шистосомоз, дракункулез (ришта).

Международное сообщество, понимая опасность и реальность поражения систем водоснабжения, уделяет серьезное внимание созданию системы надежного сопротивления террористическим угрозам [1, 2].

Исследователи водного терроризма, систематизируя имеющуюся информацию, выделяют два основных направления деструктивного использования воды (рисунок.1): «Вода как оружие» и «Вода как цель».

В первом случае речь идет, прежде всего, об использовании сокрушительной разрушительной силы больших масс воды. В частности, этого можно достичь, например, при разрушении плотины, что приводит к невосполнимым потерям национального масштаба.

Вооруженный «водный» аспект – высокотоксичные реагенты, применяемые для очистки воды, например, жидкий хлор, запасы которого в ряде случаев достигают нескольких десятков тонн, а также выведение из строя сооружений очистки сточных вод населенных пунктов, особенно крупных городов.

Рисунок 1. – Основные направления деструктивного использования воды

На основании классификации деструктивного действия воды можно составить классификацию терактов «Водного терроризма» (таблица 1).

Таблица 1. – Классификация групп терактов «Водного терроризма»

Группа классификации терактов	Результат (конечная цель) теракта	Способ достижения результата теракта
«Количество воды»	Полная остановка централизованного водоснабжения	Разрушение и выведение из строя трубопроводов, насосных станций, очистных сооружений, энергетических объектов

Группа классификации терактов	Результат (конечная цель) теракта	Способ достижения результата теракта
«Качество воды»	Преобразование питьевой воды на опасную для человека жидкость, ухудшение качества очистки сточных вод	Внесение в источники водоснабжения, резервуары чистой воды и трубопроводы ядовитых веществ, патогенных биологических агентов, недостаточно очищенных сточных вод

Так как система централизованного водоснабжения и водоотведения представляет собой совокупность габаритных отдаленных друг от друга объектов их физическое уничтожение при теракте маловероятно и речь идет о временном выведении из строя того или иного объекта, время восстановления которого при надлежащей материально-технической поддержке не является критическим для жизнедеятельности населенного пункта. Поэтому план безопасного водоснабжения должен базироваться на результатах объективной и актуальной оценке объектом обеспечения системы водоснабжения и водоотведения (таблица 2).

Таблица 2. – Степень уязвимости и восстановления объектов системы водоснабжения и водоотведения

Объект	Степень уязвимости	Степень
	(возможность	восстанавливаемости
	выведения из строя)	
Система электроснабжения:		
подстанции	высокая	низкая
кабели	низкая	высокая
воздушные линии	высокая	высокая
шкафы управления	средняя	низкая
Насосные станции	высокая	низкая
Водозаборные сооружения:		
поверхностные источники	низкая	низкая
подземные источники	высокая	низкая
Технологические сооружения		
водоподготовки:		
камеры реакции	низкая	низкая
отстойники	низкая	низкая
фильтры	низкая	низкая
реагентное хозяйство	высокая	высокая
Трубопроводы:		
магистральные	высокая	низкая
межквартальные	низкая	низкая
квартальные	низкая	низкая
Резервуары чистой воды	низкая	низкая
Средства коммуникации, обработки и	средняя	средняя
накопления информации		

План безопасности системы водоснабжения и водоотведения должен включать в себя:

достаточность, надежность и эффективность системы физической защиты объектов водоснабжения;

наличие спецтехники и материально-технического резерва (материалов и оборудования) для восстановления поврежденного.

Решение проблемы качества воды может быть выполнено при следующих условиях:

постоянный непрерывный контроль вероятных мест возможного внесения ядовитого вещества, биологически патогенного агента или радиоактивного;

оперативное определение в водопроводной воде при возникновении подозрений об их применении с одновременным предупредительным информированием населения.

осуществлять ежедневный оперативный контроль качества природной, питьевой и сточной воды во всех населенных пунктах.

Безопасность качества воды является основным аспектом противодействия водному терроризму, так как в этом случае идет речь про фактически моментальное заражение при химическом, бактериальном или радиоактивном загрязнение воды.

В этом случае возникает две задачи:

постоянный непрерывный контроль мест возможного несения отравляющего вещества (ОВ), биологического патогенного агента (БПА) или радиоактивного материала (РАМ);

оперативное определение в водопроводной воде OB, БПА и РАМ при возникновении подозрения их использования с одновременным информированием населения.

Основное безопасности: правило любое несанкционированное проникновение на объект водоснабжения необходимо оценивать с позиции возможного внесения в питьевую воду ОВ, БПА или РАМ [3]. Перечень опасных для человека ОВ настолько большой, что невозможно организовать лабораторный мониторинг, адекватный единственное возможно сделать это вести постоянный контроль электропроводности, рН и объектах водоснабжения. редокс-потенциала воды на основных обобщенные показатели достаточно информативны и их внезапное изменение может отображать внесение в воду того или иного вещества.

патогенные БПА относят микроорганизмы, генно-инженерномодифицированные микроорганизмы, яды биологического происхождения. Анализ требований к лабораториям анализирующим БПА показывает, что лаборатории водоканалов не могут полностью выполнять правила безопасности БПА, поэтому лаборатории водоканалов c работают микроорганизмами 3 и 4 групп опасности, т. е. не могут определить БПА 1 и 2 групп, которые являются составными оружия массового уничтожения, поэтому необходимо говорить про создание И надежное функционирование общегосударственной системы мониторинга оперативного контроля И загрязнения воды ОВ, БПА и РАМ, в которой лабораториям водоканалов отводится роль радиационно-химической и биологической надлежащим отбором проб воды для дальнейшего их направления специализированные (токсикологические, биологические и радиологические) государственные лаборатории.

ЛИТЕРАТУРА

- 1. Gleick P. H. Water and terrorism // Water Police. 2006. V. 8. P. 481-503.
- 2. Public health response to biological and chemical weapons: WHO guidance. 2nd ed. 2004. –357 p.
- 3. Корінько, І. В. Контроль якості води / І. В. Корінько, В. Я. Кобилянський, Ю. П. Панасенко. Харків : ХНАМГ, 2013. 288 с.

О НЕКОТОРЫХ ВОПРОСАХ СИСТЕМЫ ОПОВЕЩЕНИЯ И УПРАВЛЕНИЯ ЭВАКУАЦИЕЙ

 $Кузнецова H.H.^1$, $Кузнецов B.B.^2$

¹ МО РФ ВУНЦ ВВС «Военно-воздушная академия имени профессора Н. Е. Жуковского и Ю. А. Гагарина»

² Учебно-методический центр по гражданской обороне и чрезвычайным ситуациям Воронежской области

Проблема решения задач по обеспечению безопасности людей, которые находятся в крупных офисах, торговых центрах, в бассейнах, кинотеатрах, на спортивных объектах остается актуальной, к сожалению, и в двадцать первом веке. И лишь когда случаются трагедии с человеческими жертвами, общество начинает задумываться о причинах и способах и методах обеспечения безопасности в местах массового нахождения людей.

Для обеспечения данной безопасности важнейшую роль играют системы оповещения и управления эвакуацией людей (СОУЭ), для которых разработаны требования в различных нормативных актах, принимаемых в последнее время. Системы управления оповещением и эвакуацией являются достаточно новым направлением не только в области пожарной безопасности, но и в гражданской обороне, в энергетике, в сферах промышленности и транспорта. Есть существенные организационные различия, которые предполагают специфику в перечисленных областях применения. Но общие требования к работе этих систем имеют одно направление — обеспечение максимальной безопасности людей, находящихся как на отдыхе, так и на работе.

Такие требования к системам и их параметрам отражены в соответствующих нормах пожарной безопасности и других нормативных документах. Однако, вопросы как раз технической реализации, в частности, особенностей построения для различного уровня сложности и функционального назначения объектов не проработаны детально.

Ведущим нормативным документом (НД) для проектирования систем оповещения и управления эвакуацией СОУЭ является свод правил СП 3-13130-2009, он разработан в соответствии со статьей 84 Федерального закона от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности». В указанном НД дается такое определение: COVЭ - это комплекс организационных мероприятий и технических средств,