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Abstract. The work deals with the study of some tasks of re-establishing multidimensional Statistical dependences on the basis of empirical data by means of artificial neural networks. To provide stability (robustness) of system (process) statistical model parameters on the basis of learning artificial neural networks (ANN) at the a priori input data uncertainty as well as practically sufficient accuracy of data approximation, it is appropriate to use stable (robust) methods of deep ANN leaning methods.  

The work uses the cricking model for statistical data since we couldn’t get precise parameter values; therefore, to achieve the required accuracy, some probability was introduced. 

The synthesis method of target function scalar convolutions for mathematical model identification, based on the law of requisite variety (Ashby law), Kolmogorov power overage  concentration and the maximum likehood principle, where Student and  Romanovski statistics, are used as the proximity measure of true multidimensional samples. It makes it possible to structure preference system of a person who makes decisions for multicriterial tasks to identify mathematical models in determinate and scholastic formulations (MV-, MH tasks). 

Neural network identification was made by the scholastic approximation method on the basis of ravine method of conjugate gradients.   

The method of effective robust estimation of statistical model system parameters was worked out by employing a regularizing sequential (adaption) algorithm for synthesis of solutions with deferred correction. 

Samples of Rosenbrock function data and corresponding parameters of aerodynamic characteristics of the aircraft engine axis flow compressor were taken as examples. 

 Key words: artificial neural network, deep leaning, robust evaluation, regularizing method.
    1  Introduction

Modern connectionist models on the basis of artifitial neural network learning (ANN) are regarded as most needed in various spheres of practical activity. A wide range of their use creates various practical tasks with different input data settings and types concerning optimum system designing, system and process state diagnosis such as analysis of information of state variables, cluster analysis, object classification (image recognition, syntactic analysis of texts, state monitoring etc.).

    However, we have mathematical problems which hamper a wide application of these models for solving practical tasks. The first problem is that neural model formation problems are treated as ill-conditioned. However, these problems can be considered as conditionally correct of structural parameter optimization, when model structure is known, but its parameters are not known. In this case, to find learning parameters (ANN), the machine learning methods relying on the use of decision synthesis regulating algorithms, including deep learning methods, are widely used.
The second problem is that the income data are casual values and can have gross errors. This problem is also solvable if we use the decision synthesis based on invariance concept (the concept is widely used in the theory of automatiic control). In this case, effective stable parameter assessments can be obtained. Thus, the robust connectionist models can be formed.

 The error back propagation method, in which target the function minimization is made by gradient descent is known to be the most frequently used learning method ANN [1]. The primary advantage of the gradient drop method is the simplicity of its realization and the fact that this method is sequrely reduced to the global or local minimum for convex and non-convax functions respectively. However, there are many disadvantages of this method; therefore this method is seldom in practice:
- gradient descent can be very slow at big data samples, since each iteration demands calculating the gradient for all learning set vectors;

- doesn’t permit to renovate the model on-the-run and to add new learning samples in the process also because  the target function renovation is made for the whole initial data set at once;

- for non-convax functions, the problem of getting into local minimums arises because the method guarantees the exact decision only for the error convex target functions;

- choice of the optimal learning rate may be a difficult problem. Low learning rate can lead to a very slow convergence. On the contray, high learning rate can impede convergence, and, hence, the error function will vary around it without reaching it;

- steady renovation of all parameters with the same learning rate results in learning quality deterioration in the case when a data set is not balanced, i.e. the selected data contain classes represented by fewer objects. 
At present, various variations of the classic gradient descrnt method are used. They have less time complexity for a synthesis of real practical tasks to solve. It is due to the realized mechanisms of elimination of defects of the classic gradient method. Let’s consider some of them.

The method of scholastic gradient drop [2, 3] assumes renovation of neuron network weight coefficients using just one example from learnong selection at each step. Thus, we avoid excess calculations, since, unlike the classic gradient descent, the error function method is calculated not through the whole sample, but only for one example. Hence, ANN is learnt much faster, and new examples can be added to the network input directly in the process of learning.

A common disadvzntage of the gradient drop method is the problem of finding a global minimum as an optimal point in the case of non-convex target function; this peculiarity is taken into consideration in the group of impulse methods due to the accumulation of previous gradient values [4].

Stochastic gradient doesn’t often work either in the case of the error ravine target function. In this case, output values of the majority of neurons become close to asymptotic values of the activization function long before the end of learning: the weight ratio practically doesn’t change any longer. As a result, learning becomes unacceptably slow. The simplest improvement of the gradient descent method is the introduction of momentum when the gradient influence on the weight change is gained with time [5].
Despite essentual reductions in time complexity, the impulse methods don’t include the integrated optimization mechanisms for unbalanced selections, i.e. the data selections with rarely found signs. The problem of neural network learning for solving classification problems for non-balanced selections was particularly considered in the works [6, 7].

Adaptive gradient (Adagrad [8]) is the method in which the renovation rate of the weight coefficients of the neural network is adapted dynamically, i.e. significant renovations are made for the sign values, which are represented in minority, and weaker renovations – for frequent values. Adadelta [9-10] is an Adagrad expansion in which the the problem of swift decrease of learning rate is solved. The sum of squared gradients in this method is replaced by exponentially diminishing avarage of all previous squared gradients, i.e. the later quotient derivatives are mainly taken into account.

In the adaptive assesment method (Adam), the rule of weight renovation is defined on the basis of evaluation of two different moments. The method is described in the paper [11-13]. 

There is also a group of second-order methods, founded on the second partial derivative calculations of the target error function. Such methods possess a more accurate and fast convergence, but they are more complex to realize and demand big mumory consumption.
The Broyden-Fletcher-Goldfarb-Shanno method (BFGS, [14]) is a quasinewton method, in which the weight coefficient renovation occurs thanks to the gessian evaluation of the target error function, but it is still a first-order method since the direct calculation and matrix inversion of the second derivative quotient of the unverse matrix are not derived.
The Broyden-Fletcher-Goldfarb-Shanno method with restricted memory (L-BFGS [15]) is a variation of BFGS, developed specially for solving optimal tasks on a big data capacity. For L- BFGS, the estimation of the reverse gessian is made only on the basis of the latest m iteration data. In this method, movement in the quasi-newton direction is effected without using matrices, by forming a ring buffer.

This work is devoted to the study of incorrect tasks of multidimensional statistical dependence restoration on the basis of empirical data, neural model building using examples of unidirectional multilayer and radically based artifitial neural network learning by deep learning methods on the invariance concept basis.The work used the cricking models. It was caused by the lack of stable parameter values, using statistical data; therefore, to achieve a required accuracy, some probability is introduced. The description and use of these methods are given in the works [16, 17]. We present the examples of practical building of robust neural models to solve analysis problems of the system behavior on the basis of the interactive Decision Support System (DSS) «ROD&IDS®», which realizes the presented methodology.

2       General problem statement
    The vector function is given by a learning pair sample 
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         Method of unidirectional multilayer artifitial neural network learning
 A convolutional neural network (CNN), used for data approximation, is a parallel distributed processor, which is capable of saving acquired knowledge and processing information between local processor elements (neuroelements or neurons), bound by special links (synoptc links).
CNN includes three types of neuron layers:

· the layer of input data which are known from the task;
· the layers of intermediate data which take the corresponding data values from previous neurons, they form data and pass them to the follow-up layers;
· the layer of output data which had to be derived in the learning process
    The srored information about the data is distributed throgh the network as wight parameters of these combinations, and CNN potential development is carried out by CNN learning.
The input data for the data approximation with CNN are: input parameters and prototype (analog) control variables 
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 Initial data are usually reduced to a dimensionless form. In our case, a direct transformation was used:
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  - for another network type.  

The CNN backpropagation learning algorithm is focused on finding the error value beetween the actual network otput data and desirable ones. An error value can be reduced by modifying network characterisics. The process is repeated till the network becomes able to make a desirable type of “input – output” transormation. As a result of CNN learning, we evaluate CNN layer connection weights, and its output data are evaluated by input parameters and control variables of the designed object.

    The simplest CNN was used with one hidden layer (K=1). Here  
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  is a multitude of k layer output data; k is the layer number, k = 1…(K+1), K is the  number of hidden layers; p=1…P, P is the number of analoqs; 
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  is a multitude of k layer weights; I is the element of k layer; j is the element of (k – 1) layer. The analytic presentation of the unknown functions for CNN has the fokkowing structure:
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 is the selected activation function, 
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  is the derivative activation function.

    To provide parameter stability (robustness) and informative capability of statistical system (process) models on the basis of learning ANN at the a priori input data uncertainty and also practically sufficient data approximation, it is reasonable to use stable (robust) statistical assessment of their parameters with adaptive learning rate as the ANN learning method. 

    The function (NV- task) was used as a scalar target function bundle, allowing for  
[image: image27.wmf])

2

(

i

i

Y

f

º

, 
[image: image28.wmf])

0

(

h

h

Y

x

º

 [18]:

[image: image30.png]


, [image: image32.png]Ley =24 (d; > 0)



,

 
[image: image33.wmf](K1)(0)(0)

()()

i

fii

YYfY

+

D=-

rr

,  [image: image35.png]


, 
[image: image36.wmf](

)

(

)

(

)

å

å

=

=

×

-

×

-

=

1

0

)

0

(

1

1

2

*

2

1

2

1

2

2

)

2

(

2

2

2

4

2

}

]

)

(

)

[(

)]

(

1

[

)

{(

)]

(

1

[

H

j

H

h

Y

jh

j

ij

i

f

h

i

w

s

f

w

s

f

s

b

s

,
[image: image37.wmf](

)

,

300

2

2

max

,

2

min

,

max

.

2

*

a

s

n

f

f

f

l

i

i

f

i

i

f

f

i

ú

ú

û

ù

ê

ê

ë

é

×

D

×

÷

÷

ø

ö

ç

ç

è

æ

-

×

=

o

 
[image: image38.wmf]%

100

max

,

×

D

=

D

i

i

f

f

f

i

o

.

The approximating functions 
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  will be solved for the deep learning method, using the regular successive (adaptive) algorithm of decision synthesis with suspended correction by the scholastic approximation method on the basis of conjugate gradient ravine method [19] with adaptive learning rate [20]. Bond weight correction will be made by th following formula (the reccurent learning algorithm, corresponding to the scholastic approximation method which provides convergence  
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 are the conjugate search direction vector projections, defined in accordance with the conjugate gradient ravine method  
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 were determined according to the method of simulating the movement of bee colonies by the formula:
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      The learning and moment coefficients were determined by:
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Learning used the regularizing algorithm, realizing the iteration process interruptions in the case of calculation error accumulation (the upper T index, shown below, stands for the transposing operation of a vector into line):

if 
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When passing to a new epoch, the order of presenting new learning pairs
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, p=1…P was renewed in the recurent algoritm (the random number generator was used at the interval [1…P].
 Leatning method of radical basis artificial neural networks
A hybrid algorithm will be used for learning radial neural netwok in the case when the quantity of learning pairs considerably exceeds the number of neurons in the hidden layer 
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· selection of linear network parameters (output layer weights) based on the pseudoinverse method using Singular Value Decomposition (SVD);

· activation function nonliner parameters (centres 
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The simplest RBS structure with an open (
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, j=1…H1 is the coordinate vector of activation function centres for hidden layer neurons; 
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Analytical presentation of the required functions for the radial basis network (RBS) has the following structure:
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To define neuron weights of the network output layer 
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, the SVD decomposition, proposed in the work of Golub and Kohan, was used.
Further on (the second stage), at the fixed ouput weigh data values, the input data are put through the network to the output layer; it makes it possible to evaluate the target function scalar convolution values for vector succession 
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. After this, we return to the hidden layer (inverse propagation). The target function scalar convolution gradient vector relative to concrete centres  
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To determine coordinate centres matrix values 
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 of the activation functions for the hidden layer neurons, the C-averages algorithm was used at 
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 [21]; it makes it possiblee to reduce radial neuron network learning time.

The primary approximation was selected as: 
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 (if all initial data are reduced to  dimensionless form of the equation in advance, then 
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 To specify the values 
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, we used the algorithm of “coverage dumain” formation by the radial basis functions allowing for K “neighbors”: 
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, which made it possible to reduce the learning time RBS. 
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Refining the covariance matrix  
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completes a successive learning stage. Correcton of the covariance matrix elements was carried out by the above described deep learning method, applying regularizing successive (adaptive) algorithm of decission synthesis with suspended correction, i.e. the scholastic approroximation method on the basis of the ravine method of conjugate gradients with adaptive learning rate according to fornulae (2), (3) with changing 
[image: image112.wmf])

(

k

ij

w

for 
[image: image113.wmf]jh

s

 and 
[image: image114.wmf]jh

C

.
At the end, the recovery of the unknown function analytucal representation  
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; in dimensionless form at the beginning and then – by using a reverse transformation in the form of  physical value dependences. 
Multiple repetition of both stages leads to the complete and fast network learning, especially when the initial parameter values of radial basis functions are close to the optimal values.

In practice, the evolved stages influence parameter adaptation to varyin degrees. 

As a rule, the SVD algorithm is faster: it finds the function local minimum within one step. To level this disproportion, one linear parameter amendment was usually followed by several cycles of non-linear parameter adaptation.

To check the ANN data prediction significance (quality), we used the following values, which were avaraged as a result of 10 independent launches:

-  mean-square error energy:
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At a formal mathematical model pair comparison (FMM), we’ll estimate the dispersion signal change which characterises robustness of either model:
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    Here, the residual dispersion calculated values for each of the compared FMM were further used as dispersion signal estimations. 

1 Results of the modeling

The methodology with supporting interactive ”ROD&IDS®” KSPPR  was worked out. It is intended for a wide readership [22] and may be used to solve the following problems in robust optimal designing and intellectual diagnosing (ROD&IDS) systems:        

· to form robust models (meta-models) of the viewed systems and processes (regressive analyses);

· to estimate the information capability of the variable obtained models (Sensitivity analyses), to reduct the state space dimension reduction; 

· to estimate target function confidence intervals at the parameter preset confidence intervals and variables (dispersion analyses – Monte-Carlo analyses);

· to define rational values of averages and corresponding confidence intervals of unknown values (project parameters, control variables) at preset average values and corresponding target function confidence intervals (normal decision, Pareto multitude). 

          Such problems appear at:

· robust multicriterion optimal designing of items under conditions of uncertainty on the basis of discrete data about analogs;

· quality control of production: to reduce scrap level of the outpt produce  (Design for Six Sigma); 

· storage control in logistical problems: selection of an optimal output product program: use of resources;

· synthesis of the rational composition of medicines;

· prescription of the rational diet, medicamental treatment etc.;

· forecasting risks in banking, client insurance.

             CNN and RBS of diverse structure were used to solve the problems of designing robust models (metamodels) of the examined systems and processes (regression analysis) [19]. The same networks were built and learnt with the mathematical package MATLAB 7.0.1.

The analysis of the results of data prediction validation (quality) by the above viewed CNN and RBS learning methods revealed the following peculiarities:

· the proposed learning method of the CNN stochaic approximation with one open layer provides data prediction accuracy comparable with the CNN learning with one hidden layer by the Levenberg- Markquardt method on the basis of beyes regularization;

· RBS learning with non-linear parameter adaptation of the radial-basis functions results in considerable informational complexity of the learning method, but, still, it doesn’t provide  substentual energy reduction of mean-square error 
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 (by an order of magnitude for CNN). Therefore, to solve practical problems, it’s appropriate to do RBS learning at T=1…5.

At the same time, the method of parameter assessment of structural-parametric models of systems and processws in the form of trained ANN by using the regularizing successive (adaptive) algorithm of   the synthesis of decisions with suspended correction (by the merhod of scholastic approximation on the basis of the ravine method of conjugate gradients with adaptive learning rate) provides effective stable (robust) assessment of unknown values at the parametric input data ambiguity and sufficient practical data approximation accuracy in the problems of system improvement.

The sample of the test function values of type  
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=1% was taken as the first example of realizing the presented methodology for effective stable (robust)  estimation of system and process model parameters in the form of learning ANN. To solve data approximation problems, CNN and RBS with identical structure were used. The results of the quality estimation of the test function value sampling robust approximtion by neural models are presented in the table. It is evident that quality of robust approximation with RBS (T=3) is higher than with CNN.

The robust approximation results of value sampling for the Rosenbrock function at 
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=0,001% with RBS (T=3) are shown in Fig. 1 as the second example.

                                                                       Table
                     Results of quality estimation of data approximation with ANN.

	 ANN type
	 Mean-square error energy
	 Mean relative errorr
	Изменение дисперсии сигнала, децибел

	CNN

[2-20-1]
	0,00222
	28,9
	0

	RBS 

[2-20-1]
	1,63E-06
	1,79
	-47.0
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Figure 1 – Visualization of robust approximation results for Rosenbrock function data via a RBFN
 As the third example of realizing the presented methodology for effective stable (robust)  estimation of system and process model parameters in the form of learning ANN, the data sampling of the corresponding parameters of the aero-engine axial-flow compressor (MAFC) was taken. The input data for ANN included the air consumption values (
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) and the number of revolutions per minute (n) of AFC; the output data included the compression ratio (
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= 0,1%. The results of robust approximation pressure ratio characteristics MAFC with RBS  (T=3) are presented in Fig. 2. The mean approximation error was 
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   Figure 2 – Visualization for the results of MAFC pressure ratio via a RBFN

    6       Conclusions

The paper analyzes mathematical and software solutions in the field of robust optimal designing and intellectual diagnostics of the (ROD&IDS) system.

The methods for approximating vector functions of vector variables were based on the use of the learning artificial neural network (ANN), multilayer feedforward (MFFN) and radial-basis function (RBFN) ANN. ANN learning was carried out by the deep learning method by applying the regulerization successive (adaptive) algorithm of decusuin synthesis with suspended correction – by the method of scholastic approximation on the basis of the ravine method of conjugated gradients with adaptive learning rate.

We worked out a metodology and ”ROD&IDS®” decision making support computer system to realize it, which is intended for a wide readeship and may be used for solving practical tasks in ROD&IDS.
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