

## **Materials and Technologies**

Selected peer-reviewed full text papers from International Scientific Applied Conference "Problems of Emergency Situations" (PES 2020)

> Edited by Prof. Volodymyr Andronov

## TRANS TECH PUBLICATIONS



## **Table of Contents**

Preface

# **Chapter 1: Materials and Technologies for Fire Protection and Flame Retardation**

| Research of Fireproof Capability of Coating for Metal Constructions Using Calculation-                                                                                                                                                                  |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Experimental Method<br>A. Kovalov, V. Slovinskyi, M. Udianskyi, I. Ponomarenko and M. Anszczak                                                                                                                                                          | 3  |
| Consideration of Thermodynamic Processes Formation of Compressed-Air Foam in Design<br>Compressed Air Foam Systems                                                                                                                                      |    |
| A. Kodrik, O. Titenko, S. Vinogradov and S. Shakhov                                                                                                                                                                                                     | 11 |
| <b>Protection of Wood from Burning with Paints on Alkaline Aluminosilicates-Based</b><br>S.G. Guzii, I. Bazhelka, N. Svitlychna and V. Lashchivskiy                                                                                                     | 19 |
| <b>Formation of Fire Retardant Properties in Elastic Silica Coatings for Textile Materials</b><br>O. Skorodumova, O. Tarakhno, O. Chebotaryova, Y. Hapon and F.M. Emen                                                                                  | 25 |
| <b>Research of Mechanism of Fire Protection with Wood Lacquer</b><br>Y. Tsapko, V. Lomaha, O.P. Bondarenko and M. Sukhanevych                                                                                                                           | 32 |
| Epoxidized Dinaphthol Application as the Basis for Binder with Advanced Carbonation<br>Level to Reducing its Flammability                                                                                                                               | 41 |
| K. Afanasenko, A. Romin, Y. Klyuchka, V. Lypovyi and K. Hasanov<br>Features of some Polymer Building Materials Behavior at Heating<br>A. Vasilchenko, O. Danilin, T. Lutsenko, A. Ruban and D. Nestorenko                                               | 41 |
| Improvement of Fire Resistance of Polymeric Materials at their Filling with<br>Aluminosilicates                                                                                                                                                         | ., |
| O. Blyznyuk, A. Vasilchenko, A. Ruban and Y. Bezuhla                                                                                                                                                                                                    | 55 |
| <b>Study Insulating and Cooling Properties of the Material on the Basis of Crushed Foam</b><br><b>Glass and Determination of its Extinguishing Characteristics with the Attitude to Alcohols</b><br>A. Kireev, D. Tregubov, S. Safronov and D. Saveliev | 62 |
| Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition A. Chernukha, A. Teslenko, P. Kovalov and O. Bezuglov                                                                                                          | 70 |
| <b>Chapter 2: Emergency Prevention and Safety Assessment of Structural<br/>Elements in Construction</b>                                                                                                                                                 |    |
| Analysis of Forced Longitudinal Vibrations of Columns Taking into Account Internal                                                                                                                                                                      |    |

| Resistance in Resonance Zones                                                                                                                                                     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Y. Krutii, A. Kovrov, Y. Otrosh and M. Surianinov                                                                                                                                 | 79  |
| Influence of the Fire Temperature Regime on the Fire-Retardant Ability of Reinforced-<br>Concrete Floors Coating<br>A. Kovalov, Y. Otrosh, O. Semkiv, V. Konoval and O. Chernenko | 87  |
| Methodology of Estimation of Fire Separation Distances between Construction Facilities by Calculation                                                                             |     |
| V. Nizhnyk, Y. Feshchuk and V. Borovykov                                                                                                                                          | 93  |
| Concrete and Fiber Concrete Impact Strength<br>M. Surianinov, V. Andronov, Y. Otrosh, T. Makovkina and S. Vasiukov                                                                | 101 |
| Improvement of the Assessment Method for Fire Resistance of Steel Structures in the<br>Temperature Regime of Fire under Realistic Conditions                                      | 107 |
| T. Shnal, S. Pozdieiev, O. Nuianzin and S. Sidnei                                                                                                                                 | 107 |
| Numerical Modelling of Gas Explosion Overpressure Mitigation Effects<br>Y. Skob, M. Ugryumov and Y. Dreval                                                                        | 117 |
| The Amplitude Calculation Massive Foundations of Machines Taking into Account the Damage                                                                                          |     |
| O.V. Mykhailovska and M.L. Zotsenko                                                                                                                                               | 123 |

| 130 |
|-----|
| 126 |
| 136 |
| 143 |
|     |
| 149 |
| 158 |
| 166 |
| 100 |
|     |
| 173 |
|     |
| 179 |
|     |

## Chapter 3: Materials and Technologies for Environmental Engineering

| Influence on Environmental Safety of the Drinking Water of Nitrification in Water<br>Reservoir Being a Source of Water Supply and Filter Filling Materials in Water Treatment<br>Facilities |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| V. Iurchenko, M. Radionov, O. Melnikova, O. Rachkovskiy and L. Mykhailova                                                                                                                   | 187 |
| Using of Production Wastes in Stormwater Drainage Purification<br>A. Grytsenko, O. Rybalova, A. Matsak and S. Artemiev                                                                      | 194 |
| Environmental Safety of Waste Detergent Solutions<br>N. Bukatenko and M. Zinchenko                                                                                                          | 202 |
| Monitoring of the Environmental Technogenic Hazard of the Oil Extraction Plant<br>S. Nemenushcha, Y. Kotliar, O. Fesenko and V. Lysyuk                                                      | 208 |
| Adsorption Properties of Sorbents Used for Air Cleaning in Protective Structures of Civil Protection                                                                                        |     |
| V. Kovalenko and R. Likhnovskyi                                                                                                                                                             | 214 |
| Chapter 4: Materials Properties and Processing Technologies<br>Physic-Mechanical Properties of Composites Based on Secondary Polypropylene and<br>Dispersed of Plant Waste                  |     |
| Y. Danchenko, A. Kariev, V. Lebedev, E. Barabash and T. Obizhenko                                                                                                                           | 227 |
| <b>Technology of Safe Galvanochemical Process of Strong Platings Forming Using Ternary</b><br><b>Alloy</b><br>Y. Hapon, D. Tregubov, O. Tarakhno and V. Deineka                             | 233 |
| <b>Investigation of the Gas Sensitive Properties of Tin Dioxide Films Obtained by Magnetron</b><br><b>Sputtering</b><br>I. Chub, O. Pirogov, O. Mirgorod and S. Rudakov                     | 239 |
| Use of Palladium-Modified Polyaniline Electrode as a Sensitive Element of Fire Sensor<br>I. Ryshchenko, L. Lyashok, A. Vasilchenko, V. Asotskyi and L. Skatkov                              | 245 |
| Assessment of Electrochemical Compatibility of Structural Materials of some Dental<br>Products<br>M. Shyogoleva, O. Sevidova, A. Vasilchenko and I. Stepanova                               | 253 |
| <b>Design and Research of Eco-Friendly Polymer Composites</b><br>V. Lebedev, T. Tykhomyrova, I. Litvinenko, S. Avina and Z. Saimbetova                                                      | 259 |

| Study of Methods for Producing Flexible Solar Cells for Energy Supply of Emergency<br>Source Control<br>N. Deyneko                                                   | rgy Supply of Emergency<br>267 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Development and Evaluation of the Possibility of Using Epoxyurethane Mastic in Railway<br>Transport<br>A. Skripinets, N.V. Saienko, O. Hryhorenko and A. Berezovskiy | 273                            |

### Investigation of the Gas Sensitive Properties of Tin Dioxide Films Obtained by Magnetron Sputtering

Igor Chub<sup>1,a\*</sup>, Oleksandr Pirogov<sup>1,b</sup>, Oksana Mirgorod<sup>1,c</sup> and Sergey Rudakov<sup>1,d</sup>

<sup>1</sup>National University of Civil Defence of Ukraine, 94, Chernishevska str., Kharkov, Ukraine, 61023

<sup>a</sup>igorchub1959@gmail.com, <sup>b</sup>pir.s@ukr.net, <sup>c</sup>mir-oksa@ukr.net, <sup>d</sup>serg\_266@ukr.net

Keywords: tin dioxide films, gas sensor, magnetron sputtering

**Abstract.** In an article, studies of tin dioxide films for challenging sensitive elements of gas sensors for monitoring gaseous impurities in air have been described. The technological influence issues parameters of the process producing of tin dioxide films by magnetron sputtering at a fixed magnetron power on their crystal structure and phase composition were considered. The substrate temperature, layer thickness, and oxygen concentration in the atomized gas were considered as parameters. The foundation for improving the constructive and technological solutions of film gas sensors based on the research results was laid.

### **1** Introduction

The environmental worsening, as well as the tasks of improving the safety of production and housing and communal services, necessitates the widespread use of resistive gas sensors of the adsorption-semiconductor type. These sensors are capable of detecting the presence of various gaseous impurities in the air [1]. In such sensors sintered dioxide powders SnO<sub>2</sub> [2] are traditionally used as sensitive elements. The electrical conductivity of SnO<sub>2</sub> depends on the number of impurity atoms adsorbed from the environment by the surface of crystallites. However, the production of such sensors is material- and energy- intensive. In addition, gas-sensitive properties are manifested at temperatures above 200 °C, which limits the scope of their application and increases the cost and energy consumption. Thin-film performance of gas sensors contributes to the solution of these problems by miniaturization of these devices [3]. Therefore, technologies are currently being developed for sputtering tin oxide films by the following methods: reactive cathodic sputtering, magnetron sputtering of a pure tin target in an oxygen-containing atmosphere, high-frequency magnetron sputtering of a tin dioxide target, pyrolysis of a tin chloride solution and oxidation of a metal film coated by thermal vacuum evaporation [4]. At the same time, significant progress is observed in improving the constructive and technological solutions of film gas sensors, which leads to an increase in gas-sensitivity and selectivity.

#### **2** Unresolved Issues

The substrate temperature, the layer thickness and the oxygen concentration in the atomised gas have a significant effect on the crystal structure and phase composition of  $SnO_2$  films obtained by magnetron sputtering at the fixed magnetron power [5]. These issues have not yet been widely reflected in the scientific literature by despite their considerable practical importance. Therefore, the purpose of the study is to influence these parameters on the gas-sensitive properties of tin dioxide films to optimize the conditions for obtaining the basic layers of  $SnO_2$  gas sensors of the adsorption-semiconductor type.

#### 3 Main Part

The temperature in the range from 150°C to 350°C of the substrate during the deposition of tin dioxide films have been varied by the oxygen concentration in the gas mixture from 20% to 100%. The film thickness has been varied by from 50 nm to 350 nm. All specimens on sitall substrates