541.31

The results of researches of thermodynamically stable barium aluminates are given. The base of the thermodynamic data (enthalpies, entropies and equation factors of the thermal capacity) which are necessary for research of the multycomponent systems with barium aluminates in their composition is created.

,

,

: Ba₄Al₂O₇; Ba₅Al₂O₈;

,

 $Ba_7Al_2O_{10}$; $Ba_8Al_2O_{11}$; $Ba_{10}Al_2O_{13}$,

,

$$C_p = f(T)$$
.

0 298

[1, 2].

	- 298,		- G ₂₉₈ ,		S 298,	
	/		/		/ •	
BaO	558,15	3	528,44	3	70,29	3
- BaCO ₃	1218,80	3	1138,89	3	112,13	3
– BaCO ₃	-		-		-	
- BaCO ₃	-		-		-	
CO_2	393,51	3	394,38	3	213,94	3
- Al ₂ O ₃	1637,20	3	1541,39	3	52,51	3
- Al ₂ O ₃	1675,61	3	1582,33	3	50,92	3
$BaAl_2O_4$	2334,17	3	2190,25	4	123,43	4
$Ba_3Al_2O_6$	3537,91	3	3309,36	4	267,78	4
BaAl ₁₂ O ₁₉	10740,33	4	10151,81	4	376,56	4
$Ba_4Al_2O_7$	4014,49	5	-		329,99	5
$Ba_5Al_2O_8$	4569,03	5	-		427,82	5
$Ba_7Al_2O_{10}$	5682,5	5	-		567,66	5
$Ba_8Al_2O_{11}$	6238,10	5	-		611,68	5
$Ba_{10}Al_2O_{13}$	7350,52	5	-		778,85	5

= f(T) -

[6].

_

= f(T)

= f(T) [7 – 9]:

 $Ba_4Al_2O_7 = 275,85 + 0,56894 - 2332814,3^{-2} (298 - 1673);$

. 1.

,

1

$Ba_5Al_2O_8$	= 298,73 + 0.1239	- 1550581,9 ⁻²	(298 – 1213);
$Ba_7Al_2O_{10}$	= 374,18 + 0.1649	- 1403014,7 ⁻²	(298 – 1323);
$Ba_8Al_2O_{11}$	= 441,99 + 0.096232	- 2531396,9 -2	(298 – 1673);
$Ba_{10}Al_2O_{13}$	=441,99+0.096232	- 2531396,9 ⁻²	(298 – 1403).

. 2.

2

	$=$ + * + * $^{-2}$, / ·					
		10 ³	- 10 ⁻⁵		,	
BaO	53,30	4,35	8,3	3	298-1270	3
- BaCO ₃	86,96	48,99	11,97	3	1079	3
$-BaCO_3$	154,91	-	-	3	1079-1241	3
- BaCO ₃	163,29	-	-	3	1241	3
CO ₂	44,14	9,04	8,54	3	298-2500	3
γ -Al ₂ O ₃	68,49	46,44	-	3	-	
α - Al ₂ O ₃	114,77	12,08	35,44	3	298-1800	3
BaAl ₂ O ₄	148,32	35,44	29,25	13	298-2103	13
Ba ₃ Al ₂ O ₆	247,86	48,53	17,41	13	298-2023	13
BaAl ₁₂ O ₁₉	738,22	70,5	221,75	13	298-2171	13
$Ba_4Al_2O_7$	275,85	56,89	23,33	5	298-1673	5
Ba ₅ Al ₂ O ₈	298,73	123,87	15,51	5	298-1213	5
$Ba_7Al_2O_{10}$	374,18	164,90	14,03	5	298-1323	5
$Ba_8Al_2O_{11}$	441,99	96,23	25,31	5	298-1673	5
$B\overline{a_{10}Al_2O_{13}}$	487,25	226,40	12,24	5	298-1403	5

. 1.

,

•

200-600 .

600

,

 $C_p = f(T)$

,

-

_

,

,

 $Ba \quad - Al_2O_3$

[7, 8],

$$\begin{split} BaO &- Al_2O_3\\ \Delta G &= f(T), \end{split} \hspace{1cm}, \end{split}$$

•

$$\bigcup G(T) = {}^{0} - \tilde{n} \, \tilde{n} lnT - 1/2\tilde{n} \, b\tilde{n}T^{2} - 1/2 \, \bigcup \, \tilde{n}^{-1} + y\tilde{n}T$$
(1)

$${}^{0} = {}^{0}_{298} - {}^{1} 298 - 1/2 {}^{1} b {}^{1} 298^{2} + {}^{2} (298)^{-1}, \qquad (2)$$

у

,

[3]:

$$G^{0}_{298} = {}^{0} - \tilde{n}298\tilde{n}\ln 298 - 1/2\tilde{n} \ b\tilde{n}298^{2} - 1/2 \ (298)^{-1}$$
(3)

. 1 . 2.

-

,

-

:

1.
$$4BaCO_3 + Al_2O_3 = Ba_4Al_2O_7 + 4CO_2$$

2. $5BaCO_3 + Al_2O_3 = Ba_5Al_2O_8 + 5CO_2$
3. $7BaCO_3 + Al_2O_3 = Ba_7Al_2O_{10} + 7CO_2$
4. $8BaCO_3 + Al_2O_3 = Ba_8Al_2O_{11} + 8CO_2$
5. $10BaCO_3 + Al_2O_3 = Ba_{10}Al_2O_{13} + 10CO_2$

,

:

 Al_2O_3

1500 ₃ 1079 1241 .

:

$$\Delta G = f(T)$$
. 2 . 3.

:
$$4BaCO_3 + Al_2O_3 = Ba_4Al_2O_7 + 4CO_2$$

 $400 - 1079$
G(T) = 926100,85-29,93T·lnT+0,073T²-689312/T-532,67T
 $1079 - 1241$

 $G(T) = 1045160,75+241,69T \cdot \ln T - 0,025T^2 + 1703936,00/T - 2499$ 15T 1241 - 1500 $G(T) = 1074984 \ 31+275,16T \cdot \ln T \cdot 0,025T^2 \cdot 1703936/T \cdot 2770,27T$ 1500 $G(T) = 1137584.68 + 321.44T \cdot \ln T - 0.042T^2 - 68064/T - 3096.73T$ $: 5BaCO_3 + Al_2O_3 = Ba_5Al_2O_8 + 5CO_2$ 400 - 1079 $G(T) = 1195775,61-16,46T \cdot \ln T + 0,061T^2 - 86140/T - 816,93T$ 1079 - 1241 $G(T) = 1344600.49 + 323.07T \cdot \ln T - 0.061T^2 + 2905420/T - 3275.03T$ 1241 - 1500 $G(T) = 1381879.93 + 364.9T \cdot \ln T - 0.061T^2 2905420/T - 3613.93T$ 1500 $G(T) = 1444480.31 + 411.19T \cdot \ln T - 0.078T^2 + 1133420/T - 3940.39T$: $7BaCO_3 + Al_2O_3 = Ba_7Al_2O_{10} + 7CO_2$ 400 - 1079 $G(T) = 1740440,29-6,4T \cdot \ln T + 0,08T^2 - 504796/T - 1247,71T$ 1079 - 1241

 $G(T) = 1948795, 13+468, 95T \cdot \ln T - 0,091T^2 + 3683388/T - 4689, 05T$ 1241 - 1500

 $G(T) = 2000986,34+527,52T \cdot \ln T - 0,091T^2 + 3683388/ -5163,52T$

 $G(T) = 2063586, 72 + 573, 8T \cdot \ln T - 0, 108T^2 + 1911388/T - 5489, 98T$

$$: 7BaCO_3 + Al_2O_3 = Ba_7Al_2O_{10} + 7CO_2$$

$$400 - 1079$$

$$G(T) = 1740440,29-6,4T \cdot \ln T + 0,08T^2 - 504796/T - 1247,71T$$

$$1079 - 1241$$

$$G(T) = 1948795,13 + 468,95T \cdot \ln T - 0,091T^2 + 3683388/T - 4689,05T$$

$$1241 - 1500$$

$$G(T) = 2000986,34 + 527,52T \cdot \ln T - 0,091T^2 + 3683388/ - 5163,52T$$

$$1500$$

$$G(T) = 2063586,72 + 573,8T \cdot \ln T - 0,108T^2 + 1911388/T - 5489,98T$$

:
$$8BaCO_3 + Al_2O_3 = Ba_8Al_2O_{11} + 8CO_2$$

 $400 - 1079$
G(T) = $2015105,85-25,1T\cdot\ln T+0,133T^2-1378624/T-1298,57T$
 $1079 - 1241$
G(T) = $2253225,39+518,15T\cdot\ln T-0,063T^2+3407872/T-5231,53T$
 $1241 - 1500$
G(T) = $2312872,49+585,10T\cdot\ln T-0,063T^2+3407872/$ -5773,78T
 1500

 $G(T) = 2375472,87+631,38T \cdot \ln T - 0,08T^2 + 1635872/T - 6100,23T$

: $10BaCO_3 + Al_2O_3 = Ba_{10}Al_2O_{13} + 10CO_2$ 400 - 1079G(T) = $2559511,31+8,80T\cdot\ln T+0,11T^2-1111280/T-1895,8T$ 1079 - 1241G(T) = $2857161,07+687,87T\cdot\ln T-0,135T^2+4871840/T-6812,0T$ 1241 - 1500G(T) = $2931719,95+771,55T\cdot\ln T-0,135T^2+4871840/$ -7489,8T 1500 $G(T) = 2994320,32+817,83T \cdot \ln T - 0,152T^2 + 3099840/T - 7816,26T.$

 $Ba_4Al_2O_7$ $Ba_5Al_2O_8$, 1300 .

,

,

 $Ba_7Al_2O_{10}, Ba_8Al_2O_{11} Ba_{10}Al_2O_{13}$, 1350 - 1450 .

,

•

,

: 1. // . . . 7, 79. – . 197 – 203. **2.** . – 1945. – . : . ., . – .: , 1985. – 136 . **3.** _ • • . – .:, . ., ,

165

1986. – 408 . **4.** / . . - .: . –1979. – . 9. – 574 . **5.** . ., BaO-Al₂O₃-. – 2002. – Fe₂O₃ // 7 – 8. – . 21-24. **6.** . . , 1962. – 223 . 7. : . . Ba -Al₂O₃-SiO₂ // , 1963. – . 290-302. **8.** .: . ., . ., $BaO - Al_2O_3 //$. . . – .: . – 1999. – . 26. – . 33 – 37. 9. . .,, . ., || . – .: - 2000. – . 105. – . 6 – 11. 10. Appendino P. Sistema ossido di barioallumina // Ceramurgia. – 1972. – Vol.2, 1. – P.103 – 105. 11. Appendino P. Ricerche sul sistema silice – allumina – ossido di bario // Rev. Haut. Temper. Refract. - 1972. - Vol. 9, 3. – P. 297 – 299. 12. Appendino P. Recerche sulla zona piu basica del sistema ossido di barioallumina // Annali de chimia (Ital.). - 1971. - T. 61, 12. – P. 822 – 830. **13.** -. – 1975. – . 158, . 11. BaS, SiO₂, Al₂O₃, Fe₂O₃, H₂O // . 2445 – 2447.

»

~

666.762

r - Al₂O₃

•

The structural – mechanical properties of moulded masses based on corundum, polycrystalline $r - Al_2O_3$ fibes and binders on the base of paraffin, silicon alcoxide and its combination have been studied. The composition of masses with improved forming properties has been determined.