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Abstract Under conditions of intense anthropogenic loading in combination with
climate change, the significant degradation of water resources of the planet, espe-
cially surface waters, is observed. The surface waters are the environment where a
vast part of natural ecosystems dwell, and provide themajor source of drinkingwater.
They are also an extremely important element of technological processes in industry,
agriculture, and etc. Therefore, the assessment, control, and forecasting of surface
water quality are in a focus of many scientific investigations. This report deals with
the oxygen regime of water objects (basins of self-purification) which is studied by
the methods of mathematical modeling. The oxygen regime description consists of
the balance equations governing the dynamics of oxygen, i.e. biochemical oxygen
demand (BOD) and dissolved oxygen (DO), phosphorus, and phytoplankton. The
resulting nonlinear dynamical system is studied by the numerical and qualitative anal-
ysis methods. It is shown that the model possesses the steady solutions in a vicinity
of which the nonlinear periodic regimes can occur. When the parameters of nonlin-
earity vary, the periodic regimes lose their stability andmultiperiodic regimes appear.
Among complex system’s solutions, there are also chaotic regimes. Furthermore,
we developed the model for the river system which consists of coupled dynamical
systems describing the bio-chemical processes in two connecting self-purificating
basins. This model possesses the nonlinear periodic regimes as well.
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1 Introduction

Water is a good solvent and can transport substanceswhich adversely affect biological
systems, including human health, over long distances through river systems. Due to
its geographical (geological, relief) location, water objects are the endpoint of the
wastewater accumulation of themost ofman-made substances formed in a catchment
area. At the same time, natural waters are in constant circulation and actively interact
with the main components of the biosphere, atmosphere, lithosphere, aquatic, and
terrestrial ecosystems [1–3]. Therefore, hydro-ecological features of surface water
quality serve the natural indicator of ecological welfare of both aquatic ecosystems
and the entire catchment area [4]. Since surface runoff is formed in the catchment
area, where different pollution sources (agricultural complexes, industrial facilities,
mining facilities [5]) are located, it becomes obvious that to assesswater quality [6–8]
we should quantify the impact of these facilities, find out the nature of pollution and
ways to overcome the negative impact of polluting components (involving natural
factors) on the ecosystem’s elements.

Determining the oxygen regime of surface waters is an important component of
assessing the state of aquatic ecosystems and catchment areas. Dissolved oxygen
ensures the viability of living organisms and the self-purificating function of the
aquatic ecosystem. The participation of oxygen in the processes of biological, chem-
ical and physical–mechanical self-purification of water objects indicates that the
assessment of the concentration of dissolved oxygen is of great practical and general
scientific importance [9, 10]. Taking into account the complexity of conducting a
series of ecological experiments, the synergy of ecosystem components [11, 12],
the lack of comprehensive information about their interaction, the tasks of esti-
mating, predicting, and controlling the oxygen regime using mathematical modeling
remain insufficiently studied [13–18]. Especially this concerns the phenomena of
self-organization inherent in ecosystems. To take into account the nonlinear and
cooperative effects [19, 20], we generalize our previous investigations [13–18] of
the processes of oxygen regime formation. Therefore, the purpose of these studies
is to classify the nonlinear oxygen regimes that can be observed in the target system
and to establish their bifurcations.

2 Mathematical Model for the Oxygen Regime Description

The surface water quality [21] of a water object is characterized by the oxygen
dynamics, which in turn essentially depends on different biogenic elements (here
we consider the phosphorus dynamics) and the phytoplankton behavior [4, 19]. In
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particular, the oxygen transformations are characterized by the biochemical oxygen
demand (BOD) representing the indicator of the total organic content reacting with
oxygen [22, 23] and dissolved oxygen (DO), i.e. amount of oxygen containing in
water [24]. For modeling BOD andDO dynamics, it is known the Streeter and Phelps
model [6, 7] and its modifications [6, 22, 25–27]. These models are mostly linear
with large number of parameters and do not take into account accompanied processes
affecting the oxygen regime.

Therefore, to develop the mathematical model describing the dynamics of the
quantities BOD, DO, phytoplankton, and phosphorus, we construct the balance
equations for the corresponding concentrations CBOD , CDO , CPhT and CP .

At first, consider the processes governing the incoming and outcoming oxygen
fluxes. Sources of oxygen supply primarily include: re-aeration (invasion), i.e. satu-
ration (enrichment) of water with oxygen; oxygen supply with external water flows
from a catchment area; oxygen replenishment due to photosynthesis of algae and
higher aquatic plants.

Oxygen consumption items that cannot be neglected in the analysis of the oxygen
regime of aquatic environment include evasion, i.e. the process of oxygen transfer
fromwater to air and is based on the same physical principles as the invasion process;
destruction of organic compounds (respiration ofmicroorganisms); oxidation of inor-
ganic compounds with the formation of oxides, such as the process of nitrification,
the spending on respiration of aquatic organisms.

Closely related to the dynamics of BOD and DO is the phenomenon of reservoir
eutrophication representing the water enrichment with nutrients (mainly phosphorus
and nitrogen), which cause the growth of primary organic matter production due
to intensification of metabolic processes in algae and higher aquatic vegetation.
The main indications of reservoir eutrophication are the predominance of produc-
tion processes over destructive, which is accompanied by a significant increase in
nutrients. This phenomenon, in turn, provokes the growth of biomass of phyto-
plankton, phytobenthos, filamentous algae to the level of water “blooming”, reducing
the concentration of dissolved oxygen.

On the one hand, the growth of phytoplankton biomass is a positive phenomenon
because the forage base for aquatic organisms and oxygen level increase. However,
there comes a moment when the balance between the growth of algal biomass,
the formation of organic matter, oxygen and destructive processes is disturbed. Ulti-
mately, the physicochemical properties of the environment change: the level of nutri-
ents and organic matter increases, the level of dissolved oxygen decreases, anaerobic
zones appear and expand, turbidity increases and water transparency decreases, and
so on. As a result of the activity of algae and their decomposition, the oxygen content
in the water decreases and the concentration of toxic substances increases, which
causes mass death of fish and invertebrates [4]. However, the process of reservoir
eutrophication is determined not only by the accumulation of nutrients, but also by
the degree of water exchange, the reservoir depth and volume, and the oxygen satu-
ration degree. Therefore, the process of eutrophication is considered as a result of
the interaction of biotic and abiotic factors, which gives it an ecosystem character,
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and its study requires a systematic approach and the use of methods of mathematical
modeling.

Thus, the resulting mathematical model for the oxygen regime dynamics reads as
follows:

dCBOD

dt
= QBOD

W
−

[
k1(CDO) + q

W

]
CBOD + m1CPhT − λCBODCDO

dCDO

dt
= QDO

W
+ k2C

∗ + αCPhT −
[
k2 + q

W

]
CDO − k1(CDO)CBOD

dCPhT

dt
= QPhT

W
+ [k3(CDO ,CP) − m]CPhT ,

dCP

dt
= QP

W
− n1CPhT + n2CBOD − q

W
CP , (1)

where QBOD ,QDO ,QPhT , and QP denote rates of addition of corresponding compo-
nent from the outside; W is the volume of water object; q stands for the incoming
flow; C∗ is the oxygen concentration at its saturation; the function k1(CDO) is the
rate for oxygen consumption by BOD; k2 is the aeration coefficient; the function
k3(CDO ,CP) and m are the rate of phytoplankton growth and death, respectively;
m1 = γm, γ stands for the fraction of dead phytoplankton for oxidation;αCPhT is the
rate of oxygen adding during photosynthesis;λ is the coefficient of non-conservativity
at the nonlinear interaction of organic substance and oxygen; n1 is the rate of phos-
phorus depletion due to phytoplankton; n2 is the rate of phosphorus production from
organic substance (detritus).

To identify the functions k1(CDO) and k3(CDO ,CP), the Michaelis–Menten
kinetics [6, 28] is used. In particular,

k1(CDO) = k1
CDO

KDO + CDO
and k3(CDO ,CP) = k3

Cn
DO

Kn
ν + Cn

DO

· CP

Kμ + CP
.

Here the parameters k1 and k3 are the constants of saturation defining the behavior
of functions at infinity, n is an empirical paramet88er. The parameters KDO , Kν , and
Kμ stand for the half saturation constants.

It should be noted that system (1) can be regarded as a generalization of the well-
known Streeter–Phelps equations for the assessment of water quality [6, 7, 27, 29].

Next, let us write system (1) in dimensionless form applying the scale transfor-
mation

{CBOD;CDO;CPhT ;CP} = 〈CDO〉{x; y; z; u},

where 〈CDO〉 is a charactristic value of DO concentration; x, y, z, u are the
dimensionless quantities.

Thus, utilizing the notatins
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QBOD

W 〈CDO〉 = A,
1

〈CDO〉
(
QDO

W
+ k2C

∗
)

= B,
QPhT

W 〈CDO〉 = F,
QP

W 〈CDO〉 = C

q

W
= S, λ〈CDO〉 = λ,

KDO

〈CDO〉 = K DO ,
Kν

〈CDO〉 = K ν,
Kμ

〈CDO〉 = Kμ,

and dropping the bar over the symbols, the final form of dynamical system is as
follows:

dx

dt
= A −

[
k1y

KBOD + y
+ S

]
x + m1z − λxy,

dy

dt
= B + αz − [k2 + S]y − k1y

KBOD + y
x,

dz

dt
= F +

[
k3

yn

K n
ν + yn

· u

Kμ + u
− m

]
z,

du

dt
= C − n1z + n2x − Su. (2)

Now we are going to consider the solutions of autonomous system (2) using the
qualitative analysis method [30]. According to the method, at first, the fixed points
of system (2) should be derived. Then the stability of these points is considered in
the linear approximation. In particular, we are interested in the conditions of lose of
stability for the fixed points. These conditions provide the constraints for the model’s
parameters at which the development of nonlinear periodic solutions (limit cycle) can
be possible. To validate the limit cycle appearance, the direct numerical integration
of system (2) is used.

3 Stationary Solutions of the Mathematical Model
Describing the Oxygen Regime

Thus, the fixed points of system (2) representing the steady oxygen regimes in water
objects satisfy the nonlinear algebraic system

A −
[

k1y

KBOD + y
+ S

]
x + m1z − λxy = 0,

B + αz − [k2 + S]y − k1y

KBOD + y
x = 0,

F +
[
k3

yn

K n
ν + yn

· u

Kμ + u
− m

]
z = 0,

C − n1z + n2x − Su = 0. (3)
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To get solutions of this nonlinear system, the iterational numerical Newton’s
process is used. In the matrix form, the numerical procedure is described by the
sequence:

X p+1 = X p − J−1(X p
)
G

(
X p

)
, p = 1, 2, . . . ,

where J−1 is the inverse matrix for the matrix of linearization [31]

J =

⎛
⎜⎜⎜⎜⎜⎝

−
(
S + λy + k1 y

KBOD+y

)
−

(
λx + KBODk1x

(KBOD+y)2

)
m1 0

− k1 y
KBOD+y −

(
S + k2 + KBODk1x

(KBOD+y)2

)
α 0

0 nk3Kn
ν uy

n−1z

(Kμ+u)(Kn
ν +yn)

2 J33 J34

n2 0 −n1 −S

⎞
⎟⎟⎟⎟⎟⎠

(4)

Here

J33 = −m + k3uyn(
Kμ + u

)(
Kn

ν + yn
) , J34 = Kμk3zyn(

Kμ + u
)2(

Kn
ν + yn

) .

Using Newton’s procedure, let us consider the dependence of coordinates of fixed
points on the model’s parameter variation. Taking into account that the nonlinearity
is related with the variable y while other variables are incorporated into system (2)
linearly, the steady solutions is useful to study via the method of parameter mapping
[30]. To do this, from the first and the last equations of system (3)we get the following
expressions:

x = a1 + a2z, u = b1 + b2z,

where

a1 =
(
Kμ + y

)
A

Kμ(S + λy) + y(k1 + S + λy)
, a2 =

(
Kμ + y

)
m1

Kμ(S + λy) + y(k1 + S + λy)

b1 = C + n2a1
S

, b2 = n2a2 − n1
S

.

When these expressions are inserted into the third equation of system (3), it is
obtained the quadratic equation with respect to z:

F
(
Kn

ν + yn
)(
Kμ + u

) + (
k3y

nu − m
(
Kn

ν + yn
)(
Kμ + u

))
z = 0,

or

H1z
2 + H2z + H3 = 0,
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where

H1 = b2
(
k3y

n − m
(
Kn

ν + yn
))

, H2 = (
b2F − mKμ

)(
Kn

ν + yn
) + b1

(
k3y

n − m
(
Kn

ν + yn
))

,

H3 = F
(
b1 + Kμ

)(
Kn

ν + yn
)
.

Its roots are as follows:

z− =
−H2 −

√
H 2

2 − 4H1H3

2H1
, z+ =

−H2 +
√
H 2

2 − 4H1H3

2H1
.

Note that the right parts of the relations derived depend on the variable y only.
Thus, inserting into the second equation of system (3) the expressions for x and z,
we lead to the relation with respect to the variable y and the model’s parameters.
Solving the resulting equation for α, it is easy to get the following expression

α = (k2 + S)
y

z
+ k1

yx

(KBOD + y)z
− B

z
, (5)

where z should be replaced by z+ or z− and x is given above. In what follows, we
fix the parameter values:

A = 0.933, B = 4.974,C = 2, F = 3, k1 = 1.5, k2 = 0.7,W = 1,

q = 0.2, n = 0.44, KBOD = 4.3, Kμ = 1.14, Kν = 0.296, λ = 0.7,

k3 = 4.65, n1 = 0.65, n2 = 0.9,m = 2.3,m1 = 0.45. (6)

Using these parameters, one can depict the function α(y) in Fig. 1, where the
profile of α(y) at z = z− is shown by the solid curve and α(y) at z = z+—by the
dashed curve.

From Fig. 1 it follows that, depending on α, we can derive from one to four roots
of system (3). In particular, at α = α0 = 0.05 (Fig. 1) there are three points lying in
the curve derived at z = z− and one root belonging to the curve plotted at z = z+.
The coordinates of three fixed points now can be evaluated by Newton’s method
with the accuracy 10−5 and then the eigenvalues of the linearized matrix J can be
obtained as well.

Thus, the coordinates of
Point I: (123.30026; 0.27971; 131.47888; 137.54482) and corresponding eigen-

values ξ = (−39.42; 0.031 ± 0.33i;−0.17) of the matrix J at this point. Since
there is the complex-valued eigenvalues with positive real parts, the fixed point is an
unstable focus.

Point II: (0.54449; 5.22832; 3.59295; 0.77313), the eigenvalues ξ =
(−4.69;−0.56 ± 1.48i;−0.84). Since all real parts of ξ j are negative, then the fixed
point is a stable focus.
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Fig. 1 The graph of function α(y) defined by relation (5). Here y1, y2, and y3 are the y-coordinates
of the fixed points I, II, and III, respectively

Point III: (68.77574; 0.42813; 95.05617; 10.55825), the eigenvalues ξ =
(−21.43;−0.16 ± 1.19i; 0.16). Since there is a positive eigenvalue and pair
complex-valued ones, then the fixed point is a saddle-focus.

It is worth noting that the dependence α(y) allows one to consider the influence
of the parameters of nonlinearity λ and n on the position of the roots of system (3),
i.e. the shapes of curves in Fig. 1. In particular, when the parameter n increases, i.e.
n = 0.8 > 0.44, the curves (Fig. 2a) corresponding to z = z+ are stretched along
Oα. This causes the growth of interval of α, where there is more than one root of
system (3).

When the parameter λ decreases from 0.7 to 0.2, the curve corresponding to
z = z− displaces along vertical axes (Fig. 2b).

To get an idea of the complex structure of the phase space, the analysis of the
convergence of Newton’s method to the solutions of system (3) is carried out. We
choose the initial conditions for running iterations of Newton’s method from the
domain� = {x, u|0 ≤ x ≤ 300, 0 ≤ u ≤ 250}. Let us restrict the case with z = z+.
Then, as a result of finding the solution of system (3), we obtain one of the three
possible roots of the system.

Thus, each starting point forNewton’smethod is uniquely associatedwith a certain
root of system (3), which is denoted by a shade of black (Fig. 3a). The structure of
the set of points and enlargement of the selected domain (Fig. 3b) tell us about the
fractal nature of the resulting structure.

After derivation of the coordinates of stationary points, the type of fixed point
can be found out by studying the eigenvalues of the matrix of the linearized system.
The most interesting cases are related to the changes of the point’s types. These
changes in turn define the bifurcations of the system’s phase space. In particular,
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Fig. 2 The positions of roots of system (3) depending on the parameter n (a) and the parameter λ

(b)

we are going to consider the most intriguing case when the real parts of the pair of
eigenvalues change their sign from minus to plus. This case is called the Andronov-
Hopf bifurcation and corresponds to the birth of a periodic regime in a vicinity of a
fixed point.

To identify the Andronov-Hopf bifurcation, we fix the parameter values as above
except for the parameter λ. When λ varies, all eigenvalues ρ of the matrix J are
evaluated simultaneously with the coordinate of the fixed point I. The resulting
dependence of Re(ρ) on λ is depicted in Fig. 4 (solid curve). From the analysis of
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Fig. 3 Diagram of the results of convergence of Newton’s method iterations. Shades of black
indicate the initial conditions underwhichNewton’smethod coincideswith one of the three solutions
of system (3)

Fig. 4 The dependence of the real part of complex-valued eigenvalues of the matrix J on the
parameter λ evaluated for the fixed point I

this figure it follows that at increasingλ the eigenvalue’s real part intersects horizontal
axes at about 0.34.

It is important to estimate the position of the Andronov-Hopf bifurcation when
other parameters vary. In particular, when the parameter of nonlinearity n changes
from 0.44 to 0.46, the zero of the function Re(ρ)moves to the left, i.e. the moment of
the periodic regime displaces toward the lower values of λ (dashed curve in Fig. 4).

Thus, if we take λ a little bit larger than 0.34, we can expect to observe the stable
limit cycle appearance.
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To make sure that periodic oscillations appear, when λ grows after the Andronov-
Hopf bifurcation, we perform the numerical integration of system (2) in a vicinity of
the fixed point I. It turned out that, indeed, it is observed the oscillations producing
the limit cycle in the system’s phase space.Moreover, their amplitude increases when
λ grows.

4 Periodic and Chaotic Oxygen Regimes

Now we consider the limit cycle development in more detail at the variation of the
parameters n and λ. To evaluate the limit cycle, we choose the initial data for the
numerical integration of system (2) close to the fixed point I at n = 0.44. After
omitting the transient processes, the system approaches the periodic regime, the
phase portrait’s projection of which is depicted in Fig. 5a. When n = 0.48, the
double period bifurcation occurs and double limit cycle (Fig. 5b) exists. The result
of another period doubling bifurcation is shown in Fig. 6a representing the quadruple
limit cycle at n = 0.50. Finally, at n = 0.56 there is a chaotic attractor (Fig. 6b) in
the phase space.

To find out the geometric structure of the chaotic attractor, the Poincare section
technique can be used. To apply it, we choose the section plane 	 : z = 150 and
evaluate the points of intersection of the plane and a trajectory. In particular, at
n = 0.54 in this plane the set of points forming the localized islands (Fig. 7a) is
observed. When n = 0.56, the points of intersections form the strip (Fig. 7b) of
fractal structure. Such changes in Poincare section structure indicate the occurring
of bifurcations in the chaotic attractor during the parameter n variation. The fact that
we observed the “shuffled” narrow strip means that the geometric dimension of the
chaotic attractor is measured not by an integer but by a fractional number [30].

Using the same technique, it is useful to analyze the bifurcation diagramdescribing
the development of the stable attractors at increasing n. For diagram construction,

Fig. 5 The projections of the phase portraits on the plane (x; z) of the limit cycles at n = 0.44
(a) and n = 0.48 (b)
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Fig. 6 The phase portraits of the limit cycles at n = 0.50 (a) and n = 0.56 (b)

Fig. 7 The Poincare sections of the chaotic attractors existing at n= 0.54 (a) and n= 0.56 (b) (here
λ = 0.7)

we put the parameter n along horizontal axes, while the values of x-coordinates
of intersection points along vertical one. Thus, we construct the Poincare diagram
(Fig. 8a), when λ = 0.7 and n grows from 0.44, when the limit cycle exists and
produces the leftmost point in Fig. 8a, to 0.64 corresponding to another limit cycle
existence. This diagram shows the moments of period doubling bifurcations and
chaotic attractor development. There is also the separated “window” of solutions
with quadruple period. Note that this “window” disappears, when λ increases to 0.72
(Fig. 8b). Instead of the developed chaotic zone, we observe the structure which is
inherent to multiperiodic regimes obeying the period-doubling scenario.

In the similar spirit, the Poincare diagrams are constructed at lowerλ, i.e.λ = 0.68
(Fig. 9a) and λ = 0.66 (Fig. 9b).

Analyzing these diagrams we see that the decreasing λ causes the growth of
attractor’s size and “window” size too. Moreover, the chaotic zones become more
wide and intensive. There is the coexisting chaotic attractor producing the points in
the diagrams beyond the main set of points.
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Fig. 8 The Poincare bifurcation diagrams at λ = 0.70 (a) and λ = 0.72 (b), when the parameter n
grows

Fig. 9 The Poincare bifurcation diagrams at λ = 0.68 (a) and λ = 0.66 (b) when the parameter n
grows

The results of qualitative analysis concerning the periodic regimes can be supple-
mented by the application of shooting method [30, 32]. According to the method, the
initial value problem transforms to the boundary value problem, which is considered
over a period of the limit cycle. This method also allows one to evaluate a point lying
on the limit cycle with high accuracy, its Floquet multipliers characterizing the limit
cycle’s stability, and to derive the unstable periodic solutions which are important
for understanding the scenarios of bifurcations.

In particular, consider the limit cycle existing at n = 0.44 and λ = 0.7
(Fig. 5a). To realize the shooting method algorithm, the procedures and func-
tions from the “Mathematica” can be used. Thus, starting from the initial data
(112.6084; 0.4004; 194.8777; 53.3995) which is close to the limit cycle approx-
imate value of period T = 17.6, after application of shooting method we
get the refined point’s coordinates (112.6084; 0.4003; 194.7685; 53.4728) and
limit cycle period T = 17.5019. Simultaneously, the Floquet multipliers ρi =
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(−0.8327; 0.9999; −0.1398; 0) are evaluated. Since |ρi | < 1, we can conclude
that the limit cycle considered is stable.

From the Poincare diagram of Fig. 8a it follows that this periodic solution at
increasing n is destroyed and instead another periodic regime appears. To find out
what happened with the previous regime, we fix n = 0.45 and apply the shooting
method to the data derived at n = 0.44. Then we get the coordinates of cycle’s
point (112.6084; 0.4037; 197.0695; 51.7384), its period T = 17.1364, and the
Floquet multipliers ρ = (−1.0971; 0.9999;−0.1221; 0). Since |ρi | > 1, it means
that the derived periodic regime is unstable (repeller). If we take the initial data on
the double limit cycle when Ts = 34.4, then we obtain the cycle’s point (136.2579;
0.2075; 92.5914; 200.5915), its refined period Ts = 34.2307, and Floquetmultipliers
ρ = (0.9999; 0.6831; 0.0260; 0). From the inequality |ρi | < 1 it follows the stability
of the double limit cycle (attractor).

Comparing the periods of stable and unstable limit cycles, we get Ts
/
Tu =

1.9558 ≈ 2. From this it follows that we indeed deal with the period doubling
bifurcation after which the pair of periodic trajectories coexists.

Thus, we shown that dynamical system (2) possesses the periodic (both stable
and unstable) solutions, which undergo the several periodic doubling bifurcations,
and chaotic solutions.

5 The Construction of the Mathematical Model
for the River System Using the Nonlinear Dynamical
Model of the Basin of Self-Purification

One of the possible applications of model (1) is the assessment of oxygen regime for
drainage systems. To do this, we assume that the drainage system can be represented
by the pair of basins of self-purification. Let these basins join successively. Assume
also that the first basin possesses N incoming streams with a rate q j , j = 1, ..., N
each. Then the stream outcoming from the first basin and incoming into the second
basin has the rate

∑N
j=1 q j . The same stream leaves the second basin to provide the

mass conservation. Then, using model (1), the mathematical model for these joined
basins reads as follows:

dC1
BOD

dt
= A1 − [

k11
(
C1

DO

) + S1
]
C1

BOD + m1
1C

1
PhT − λ1C1

BODC
1
DO ,

dC1
DO

dt
= B1 + α1C1

PhT − [
k12 + S1

]
C1

DO − k11
(
C1

DO

)
C1

BOD,

dC1
PhT

dt
= F1 + [

k13
(
C1

DO ,C1
P

) − m1
]
C1

PhT ,

dC1
P

dt
= C1 − n1C

1
PhT + n2C

1
BOD − S1C

1
P ,
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dC2
BOD

dt
= C1

BODS2 − [
k21

(
C2

DO

) + S2
]
C2

BOD + m2
1C

2
PhT − λ2C2

BODC
2
DO ,

dC2
DO

dt
= C1

DO S2 + k22C
∗,2 + α2C2

PhT − [
k22 + S2

]
C2

DO − k21
(
C2

DO

)
C2

BOD,

dC2
PhT

dt
= C1

PhT S2 + [
k23

(
C2

DO ,C2
P

) − m2
]
C2

PhT ,

dC2
P

dt
= C1

P S2 − n21C
2
PhT + n22C

2
BOD − S2C

2
P , (7)

where

A1 =
∑N

j=1 q j c
j
BOD

W1
, B1 =

∑N
j=1 q j c

j
DO

W1
+ k12C

∗,1, F1 =
∑N

j=1 q j c
j
PhT

W1
, C1 =

∑N
j=1 q j c

j
P

W1
,

S1,2 =
∑N

j=1 q j

W1,2
, ki1

(
Ci

DO

) = ki1C
i
DO

K i
DO+Ci

DO
, ki3

(
Ci

DO ,Ci
P

) = ki3
(Ci

DO)
ni

(K i
ν)

ni +(Ci
DO)

ni
· Ci

P

K i
μ+Ci

P
,

i = 1, 2.
The system obtained is highly dimensional and nonlinear. Therefore, let’s study it

by numericalmethods.We can assume that all quantities of system (7) are dimension-
less (due to application of the procedure mentioned above). Thus, the parameters for
the first basin are chosen close to set (6), namely A1 = 0.933, B1 = 4.974, F1 = 3,
C1 = 2, S1 = 0.2, k11 = 1.5, k12 = 0.7, n11 = 0.65, n22 = 0.9, k13 = 4.65, KDO = 4.3,
Kν = 0.296, Kμ = 1.14, λ1 = 0.7, α1 = 0.05, m1

1 = 0.45, m1 = 2.3, and the
empirical coefficient nI = 0.6.

For the second basin we prescribed the following parameter values λ2 = 2.3,
nI I = 0.5, while the rest of parameters are the same as for the first basin. The
parameter C∗,2 characterizing the processes of aeration in the basin is chosen as
a control parameter. We start from C∗,2 = 1.42. Omitting the transient processes,
system (7) approaches the double periodic regime the phase portrait projection of
which is depicted in Fig. 10a. When C∗,2 = 1.57 and C∗,2 = 3.4, the corresponding
phase portrait projections are shown in Fig. 10b and c, respectively.

Comparing the amplitude values of the functions from Fig. 10, we can conclude
that the increase in oxygen supply in the second basin causes the decrease in the
concentration of the nutrient element phosphorus in water. It should be noted that the
phosphorus concentration changes quite sharply when the parameter C∗,2 changes.
From the analysis of the phase portraits it also follows that the dynamics of oxygen
regime becomes more complex when C∗,2 increases.

6 Conclusions

Summarizing, we developed the nonlinear mathematical model describing the
oxygen regime in water objects. This model is based on the well-known Streeter
and Phelps model dealing with the dynamics of BOD and OD. To generalize the
Streeter and Phelps model, we incorporate additional factors affecting the oxygen
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Fig. 10 The phase portraits of system (7) at the following parametersC∗,2 = 1.42 (a),C∗,2 = 1.57
(b), C∗,2 = 3.4 (c)

regime, namely the dynamics of phosphorus and phytoplankton. It should be noted
that the study of resulting dynamical system is a complex challenge due to nonlin-
earity and the high dimension of the system’s phase space. Therefore, we apply the
qualitative and numerical analysis methods, which provide the information on the
model’s dynamics without construction of exact system’s solutions. We thus shown
that model can possess several steady solutions of different stability. The variation
of the parameters of nonlinearity causes the change of their stability type, i.e. the
bifurcation occurs. In particular, we derived the conditions when the Andronov-Hopf
bifurcation takes place. It is shown that due to this bifurcation the nonlinear periodic
solution develops. Applying Poincare section technique, we revealed the chain of
period doubling bifurcations and the formation of the chaotic attractors. It is worth
to note that the revealed attractors represent the limiting states of the system’s evolu-
tion under the certain set of initial data for the system. Their properties (period,
frequency, statistical characteristics, and etc.) are defined by the structure of the
system only. This allows one to understand the role of each system’s component in
the formation of complex dynamical patterns of system’s evolution. In other words,
these studies shed light on the phenomena of self-organization which emerge in the
ecological systems [8, 12, 19, 20].
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