АНАЛІЗ ВПЛИВУ ЯКОСТІ ОЦІНОК ПАРАМЕТРІВ РУХУ НА ОЦІНКИ ПРОГНОЗУ ВЕКТОРУ СТАНУ КОСМІЧНОГО АПАРАТУ

О.В. Дремлюга¹, І.Г. Лисаченко¹, О.М. Роянов¹, Б.О. Чумак¹, В.М. Попов² (¹Об'єднаний науково-дослідний інститут ЗС України, Харків, ²Національний автомобільно-дорожній університет, Харків)

Проведений аналіз якості функціонування наземної суміщеної радіотехнічної системи (СРТС) з точки зору забезпечення заданої точності вимірювальної інформації. Запропонована модель обробки цієї інформації в реальному масштабі часу для одержання прогнозованих оцінок вектору стану космічного апарату (КА). Виявлений вплив точності оцінок параметрів руху КА на якість поточного прогнозу.

аналіз якості функціонування наземної суміщеної радіотехнічної систем

Вступ і аналіз літератури. При забезпеченні контролю і управління рухом космічних апаратів на коротких мірних інтервалах та при обмеженій кількості мірних витків одним з найголовніших залишається завдання одержання швидкого результату. Тобто іншими словами орбіта КА повинна найкращим чином відповідати меті польоту, а її реалізація має досягатися при мінімальних умовних витратах [1]. Високоточне та оперативне визначення вектора стану КА пов'язано з необхідністю:

 точного визначення коректуючої управляючої дії, при якій визначений функціонал ефективності виконання КА задач функціонування приймав мінімальне значення [2];

- визначення маневрових та динамічних властивостей КА [3];

 високоефективного контролю процесу виводу КА або групи КА однією ракетою-носієм на задану (задані) орбіту;

 оперативного визначення величини небезпечних зближень КА при сучасній заселеності навколоземного простору;

 своєчасного контролю процесу сходу з орбіти КА, як планового так і нештатного, в реальному часі;

 визначення часу зустрічі КА і сеансів обміну інформацією між ними при проведенні інспекції одного КА іншим.

Вирішення зазначених задач з високою якістю можливе тільки тоді, коли реальна траєкторія руху космічного апарату з досить високою точністю співпадає з розрахунковою [1 - 8]. У цьому ракурсі досить актуальною є задача визначення істинних орбіт та прогнозу польоту КА за результатами вимірювальної інформації в реальному масштабі часу. Виходячи з фізичної суті зазначеної проблеми вирішимо дану задачу при обмеженні розглядання руху КА в картинній площині, що не впливає на суттєвість рішення.

Виклад основного матеріалу. З вимірювального пункту, розташованого на поверхні Землі, в деякі моменти часу к проводяться одночасно вимірювання і незалежних навігаційних функцій руху КА R_i(i = 1,...,4).

Погрішності вимірювань некорельовані, з нульовим математичним сподіванням і мають середньоквадратичні відхилення σ_{ik} [4]. Слід знайти відхилення вектору прогнозованих параметрів $\Delta \overline{\lambda}_{np}$ від необхідного та точність одержаного рішення.

Нехай радіотехнічна система вимірює, як і більшість систем, що застосовуються в наземному автоматизованому комплексі управління (НА-КУ) КА України для зазначеної мети наступні навігаційні параметри руху:

 різницю далекостей між антеною об'єкту (О) і фазовими центрами антен приймальних пунктів ПП1 та ПП2;

 різницю відповідних радіальних швидкостей;

 суму далекостей між фазовим центром антени передавача (ПРД), антени об'єкту і антени центрального приймального пункту (ПП1);

 суму відповідних радіальних швидкостей (рис. 1).

Вимірювані навігаційні

параметри руху будуть визначатися виразами:

$$R_{1k} = \left\{ (x_k - x_0)^2 + (y_k - y_0)^2 \right\}^{\frac{1}{2}} + \left\{ (x_k - x_1)^2 + (y_k - y_1)^2 \right\}^{\frac{1}{2}} - ; \quad (1)$$

$$R_{2k} = \frac{(x_{k} - x_{0})V_{xk} + (y_{k} - y_{0})V_{yk}}{(x_{k} - x_{0})^{2} + (y_{k} - y_{0})^{2})^{\frac{1}{2}}} + \frac{(x_{k} - x_{1})V_{xk} + (y_{k} - y_{1})V_{yk}}{(x_{k} - x_{1})^{2} + (y_{k} - y_{1})^{2})^{\frac{1}{2}}}; \quad (2)$$

$$R_{3k} = \frac{(x_k - x_1)^2 + (y_k - y_1)^2}{(x_k - x_2)^2 + (y_k - y_2)^2} + \frac{(y_k - y_2)^2}{(x_k - x_2)^2} + \frac{(y_k - y_1)^2}{(y_k - y_1)^2} + \frac{(y_k - y_1)^2}{(y_k - y_1)^2}$$

$$R_{4k} = \frac{(x_k - x_1)V_{xk} + (y_k - y_1)V_{yk}}{(x_k - x_1)^2 + (y_k - y_1)^2)^{\frac{1}{2}}} - \frac{(x_k - x_2)V_{xk} + (y_k - y_2)V_{yk}}{(x_k - x_2)^2 + (y_k - y_2)^2)^{\frac{1}{2}}}.$$
 (4)

Рис. 1. Схема взаємодії наземної і бортової апаратури

39

Оцінці підлягають прямокутові координати (x_k, y_k) і відповідні компоненти вектору швидкості (V_{x_k}, V_{y_k}) в системі координат, в якій задані координати фазових центрів антен СРТС.

Зауважимо, що СРТС використовують один сигнал як для передавання семантичної інформації, так і для здійснення траєкторних вимірів. При суміщенні дисперсія сумарної похибки виміру далекості буде визначатися виразом [5]:

$$\sigma_{\Xi\Sigma}^{2}(t) = \frac{c^{2}\tau_{0}^{2}N_{0}\Delta f_{\Xi\Xi}}{P_{c}(t)} \left(1 + \frac{\pi^{2}N_{0}R_{iH\varphi}}{16P_{c}(t)}\right) + \left(\frac{\ddot{\Xi}(t)}{4\Delta f_{\Xi\Xi}^{2}}\right)^{2},$$
 (5)

де $\ddot{\Pi}(t) - функція змінювання радіального прискорення; <math>\Delta f_{\rm m,I} - e \phi$ ективна шумова смуга замкненого контуру слідкування за параметром сигналу; с – швидкість розповсюдження електромагнітних коливань; $P_c(t)$ – потужність сигналу, що приймається; $R_{\rm in\phi}$ – швидкість передавання ін-формації; τ_0 – тривалість імпульсу; N_0 – спектральна густина потужності шумів.

Мінімальне значення дисперсії сумарної похибки вимірів відповідає оптимальному значенню ефективної шумової смуги $\Delta f_{m \Pi \text{ опт}}$:

$$\Delta f_{\rm III \ JI \ omr}(t) = \left[\frac{\ddot{\Pi}^2(t) P_{\rm c}(t)}{c^2 \tau_0^2 8 N_0 \left(1 + \frac{\pi^2 N_0 R_{\rm in\phi}}{16 P_{\rm c}(t)} \right)} \right]^{1/5}$$
(6)

. 1-

і визначається з виразу:

$$\sigma_{\mathcal{A}\Sigma_{\min}}^{2}(t) \approx 0.99 \frac{\ddot{\mathcal{A}}^{2/5}(t) \cdot c^{8/5} \cdot \tau_{0}^{8/5} \cdot N_{0}^{4/5} \left(1 + \frac{\pi^{2} N_{0} R_{i\mu\phi}}{16P_{c}(t)}\right)^{4/5}}{P_{c}^{4/5}(t)} .$$
(7)

Сумарна дисперсія швидкісного каналу буде дорівнювати:

$$\sigma_{\dot{\varPi}\Sigma}^{2}(t) = \frac{\lambda_{0}^{2} \cdot N_{0} \cdot \Delta f_{\mathfrak{II}}{}_{\dot{\varPi}}}{P_{c}(t) \cdot \pi^{2} \cdot T_{\mathfrak{II}}^{2}{}_{\dot{\varPi}}} \left(1 + \frac{R_{i\mu\phi} \cdot N_{0}}{2 \cdot P_{c}(t)}\right) + \left(\frac{0.43 \cdot \dddot{\varPi}(t)}{\Delta f_{\mathfrak{II}}^{3}{}_{\dot{\varPi}}}\right)^{2} , \qquad (8)$$

де $\overset{\mbox{\tiny m}}{\mathcal{I}(t)}$ – похідна четвертого ступеню від функції далекості; λ_0 – довжина хвилі несучого коливання. У цьому випадку:

$$\Delta f_{\rm m,\dot{\mu}_{\rm OHT}}(t) = \left[\frac{2 \cdot (0,43 \cdot \vec{\mu}(t))^2 \cdot \pi^2 \cdot P_{\rm c}(t) \cdot K_{\rm c}^2}{\lambda_0 \cdot N_0 \cdot \left(1 + \frac{N_0 R_{\rm in\phi}}{2 P_{\rm c}(t)}\right)} \right]^{1/9}; \tag{9}$$

$$\sigma_{\dot{\Pi}\Sigma\min}^{2}(t) \cong 1,04 \frac{\vec{\Pi}_{1}^{2/3}(t) \cdot \lambda_{0}^{4/3} \cdot N_{0}^{2/3} \left(1 + \frac{R_{iH\Phi} \cdot N_{0}}{2 \cdot P_{c}(t)}\right)^{2/3}}{\pi^{4/3} \cdot P_{c}^{2/3}(t) \cdot K_{c}^{\frac{4}{3}}}.$$
 (10)

Відхилення вектору прогнозованих параметрів Δλ_{пр} від необхідного будемо знаходити при умовах, що практично завжди відповідають реальним, в яких вирішується дана задача:

- збурення, які відчувають КА на етапі пасивного польоту досить малі, і ними можна знехтувати;

 величина промаху цілком залежить тільки від значень параметрів руху в граничній (початковій) точці (рис. 2).

Отже, нехай похила далекість до КА як функція часу описується рівнянням [6]

$$\mathcal{I}(t) = \sqrt{H^2 + \frac{\mu_3 (t - t_0)^2}{R_3 + H}} .$$
(11)

Рис. 2. Відхилення руху КА

При цьому радіальна швидкість описується виразом:

$$\dot{\mathcal{I}}(t) = \frac{\mu_3(t - t_0)}{(R_3 + H)\mathcal{I}(t)}.$$
(12)

Як доведено в [6], при визначенні різниці далекостей та радіальних швидкостей ці функції замість просторових можна замінити часовими, а саме: $\Delta A(t) \cong A(t + \Delta t) - A(t)$ і $\Delta \dot{A}(t) \cong \dot{A}(t + \Delta t) - \dot{A}(t)$.

Для визначення параметрів промаху $\Delta \overline{\lambda}^{T} = \left| \delta X, \delta Y, \delta V_{x}, \delta V_{y} \right|$ проведемо розкладання цих функцій в ряд Тейлора за початковими відхиленнями вимірюваних функцій в оточенні розрахункової точки і обмежимося лінійними складовими. При цьому одержимо:

$$\begin{cases} \delta \mathbf{X}(t) = \frac{\partial \mathbf{x}}{\partial \mathcal{A}} \, \delta \mathcal{A}(t) + \frac{\partial \mathbf{x}}{\partial \dot{\mathcal{A}}} \, \delta \dot{\mathcal{A}}(t) + \frac{\partial \mathbf{x}}{\partial \Delta \mathcal{A}} \, \delta \Delta \mathcal{A}(t) + \frac{\partial \mathbf{x}}{\partial \Delta \dot{\mathcal{A}}} \, \delta \Delta \dot{\mathcal{A}}(t); \\ \delta \mathbf{Y}(t) = \frac{\partial \mathbf{y}}{\partial \mathcal{A}} \, \delta \mathcal{A}(t) + \frac{\partial \mathbf{y}}{\partial \dot{\mathcal{A}}} \, \delta \dot{\mathcal{A}}(t) + \frac{\partial \mathbf{y}}{\partial \Delta \mathcal{A}} \, \delta \Delta \mathcal{A}(t) + \frac{\partial \mathbf{y}}{\partial \Delta \dot{\mathcal{A}}} \, \delta \Delta \dot{\mathcal{A}}(t); \end{cases} \tag{13}$$

$$\begin{cases} \delta \mathbf{V} \mathbf{x}(t) = \frac{\partial \mathbf{V} \mathbf{x}}{\partial \boldsymbol{\Delta}} \delta \boldsymbol{\Delta}(t) + \frac{\partial \mathbf{V} \mathbf{x}}{\partial \dot{\boldsymbol{\Delta}}} \delta \dot{\boldsymbol{\Delta}}(t) + \frac{\partial \mathbf{V} \mathbf{x}}{\partial \boldsymbol{\Delta} \boldsymbol{\Delta}} \delta \boldsymbol{\Delta} \boldsymbol{\Delta}(t) + \frac{\partial \mathbf{V} \mathbf{x}}{\partial \boldsymbol{\Delta} \dot{\boldsymbol{\Delta}}} \delta \boldsymbol{\Delta} \dot{\boldsymbol{\Delta}}(t); \\ \delta \mathbf{V} \mathbf{y}(t) = \frac{\partial \mathbf{V} \mathbf{y}}{\partial \boldsymbol{\Delta}} \delta \boldsymbol{\Delta}(t) + \frac{\partial \mathbf{V} \mathbf{y}}{\partial \dot{\boldsymbol{\Delta}}} \delta \dot{\boldsymbol{\Delta}}(t) + \frac{\partial \mathbf{V} \mathbf{y}}{\partial \boldsymbol{\Delta} \dot{\boldsymbol{\Delta}}} \delta \boldsymbol{\Delta} \boldsymbol{\Delta}(t) + \frac{\partial \mathbf{V} \mathbf{y}}{\partial \boldsymbol{\Delta} \dot{\boldsymbol{\Delta}}} \delta \boldsymbol{\Delta} \dot{\boldsymbol{\Delta}}(t). \end{cases}$$
(14)

Виходячи з наведеної моделі руху, знаходимо:

$$y(t) = \frac{(R_3 + H)^2 - R_3^2 - \mathcal{I}^2(t)}{2R_3};$$
(15)

$$\begin{aligned} \mathbf{x}(t) &= \sqrt{\mathcal{A}^{2}(t) - \mathbf{y}^{2}(t)} \,, \\ \mathbf{V}\mathbf{x}(t) &= \frac{\mathcal{A}(t)\dot{\mathcal{A}}(t)}{\sqrt{\mathcal{A}^{2}(t) - \mathbf{y}^{2}(t)}} + \frac{\mathcal{A}(t)\dot{\mathcal{A}}(t)\mathbf{y}(t)}{\mathbf{R}_{3}\sqrt{\mathcal{A}^{2}(t) - \mathbf{y}^{2}(t)}}; \\ \mathbf{V}\mathbf{y}(t) &= -\frac{\mathcal{A}(t)\dot{\mathcal{A}}(t)}{\mathbf{R}_{3}}. \end{aligned}$$
(16)

Переходячи від диференціалів при граничних умовах до відповідних похибок, і враховуючи (13 – 16), одержимо

$$\sigma_{x} = -\frac{\underline{\mathcal{A}}(t)}{\sqrt{\underline{\mathcal{A}}^{2}(t) - y^{2}(t)}} \sigma_{\underline{\mathcal{A}}} + \frac{[\mu_{3}(t - t_{0})]^{2}}{(R_{3} + H)^{2} \dot{\underline{\mathcal{A}}}^{3}(t) \sqrt{\left[\frac{\mu_{3}(t - t_{0})}{(R_{3} + H)\dot{\underline{\mathcal{A}}}(t)}\right]^{2} - y^{2}}} \sigma_{\underline{\mathcal{A}}} - \frac{\underline{\mathcal{A}}(t + \Delta t) - \underline{\mathcal{A}}(t)}{\sqrt{\left[\underline{\mathcal{A}}(t + \Delta t) - \underline{\mathcal{A}}(t)\right]^{2} - [y(t + \Delta t) - y(t)]^{2}}} \sigma_{\Delta\underline{\mathcal{A}}} + (17)$$

$$+ \frac{[\mu_{3}\Delta t]^{2}}{(R_{3} + H)^{2} [\dot{\underline{\mathcal{A}}}(t + \Delta t) - \dot{\underline{\mathcal{A}}}(t)]^{3}} \sqrt{\left[\frac{\mu_{3}\Delta t}{(R_{3} + H)[\dot{\underline{\mathcal{A}}}(t + \Delta t) - \dot{\underline{\mathcal{A}}}(t)]}\right]^{2} - [y(t + \Delta t) - y(t)]^{2}}} \sigma_{\underline{\mathcal{A}}\underline{\dot{\mu}}};$$

$$+ \frac{[\mu_{3}(t - t_{0})]^{2}}{\sigma_{y}} = -\frac{\underline{\mathcal{A}}(t)}{R_{3}} \sigma_{\underline{\mathcal{A}}} + \frac{[\mu_{3}(t - t_{0})]^{2}}{R_{3}(R_{3} + H)^{2} \dot{\underline{\mathcal{A}}}^{3}(t)} \sigma_{\underline{\dot{\mu}}} - \frac{\underline{\mathcal{A}}(t + \Delta t) - \underline{\mathcal{A}}(t)}{R_{3}} \sigma_{\underline{\mathcal{A}}\underline{\mu}} + \frac{[\mu_{3}(t - t_{0})]^{2}}{R_{3}(R_{3} + H)^{2} [\dot{\underline{\mathcal{A}}}(t + \Delta t) - \dot{\underline{\mathcal{A}}}(t)]^{3}} \sigma_{\underline{\mathcal{A}}\underline{\dot{\mu}}};$$

$$- \frac{\underline{\mathcal{A}}(t + \Delta t) - \underline{\mathcal{A}}(t)}{R_{3}} \sigma_{\underline{\mathcal{A}}\underline{\mu}} + \frac{[\mu_{3}(t - t_{0})]^{2}}{R_{3}(R_{3} + H)^{2} [\dot{\underline{\mathcal{A}}}(t + \Delta t) - \dot{\underline{\mathcal{A}}}(t)]^{3}} \sigma_{\underline{\mathcal{A}}\underline{\dot{\mu}}};$$

$$(18)$$

$$\sigma_{Vx}(t) = \frac{\partial Vx}{\partial \underline{\mathcal{A}}} \sigma_{\underline{\mathcal{A}}} + \frac{\partial Vx}{\partial \underline{\dot{\mathcal{A}}}} \sigma_{\underline{\mathcal{A}}\underline{\mu}} + \frac{\partial Vx}{\partial \underline{\mathcal{A}}\underline{\mu}} \sigma_{\underline{\mathcal{A}}\underline{\mu}};$$

$$(19)$$

$$\sigma_{Vy}(t) = \frac{\partial Vy}{\partial \mu} \sigma_{\mu} + \frac{V_y}{\partial \dot{\mu}} \sigma_{\dot{\mu}} + \frac{\partial Vy}{\partial \Delta \mu} \sigma_{\Delta \mu} + \frac{\partial Vy}{\partial \Delta \dot{\mu}} \sigma_{\Delta \dot{\mu}}, \qquad (20)$$

де часткові похідні виразів (19), (20) дорівнюють:

$$\begin{aligned} \frac{\partial \mathbf{V}\mathbf{x}}{\partial \dot{\mathbf{\mu}}} &= \frac{\mathcal{\mu}(t)}{\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{y}^{2}(t)}} + \frac{\mathcal{\mu}(t)\mathbf{y}(t)}{\mathbf{R}_{3}\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{y}^{2}(t)}};\\ \frac{\partial \mathbf{V}\mathbf{x}}{\partial \mathcal{\mu}} &= \frac{\dot{\mathcal{\mu}}(t)}{\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{y}^{2}(t)}} + \frac{\dot{\mathcal{\mu}}(t)\mathbf{y}(t)}{\mathbf{R}_{3}\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{y}^{2}(t)}};\\ \frac{\partial \mathbf{V}\mathbf{x}}{\partial \mathcal{\mu}} &= \frac{\dot{\mathcal{\mu}}(t)}{\sqrt{\left[\mathcal{\mu}(t + \Delta t) - \mathcal{\mu}(t)\right]^{2} - \mathbf{y}^{2}(t)}} - \dot{\mathcal{\mu}}(t)\left[\left\{\mathcal{\mu}(t + \Delta t) - \mathcal{\mu}(t)\right\}^{2} - \mathbf{y}^{2}(t + \Delta t)\right]^{\frac{3}{2}} \times \\ &\times \left\{\mathcal{\mu}(t + \Delta t) - \mathcal{\mu}(t)\right\}^{2}; \qquad (21)\\ \frac{\partial \mathbf{V}\mathbf{x}}{\partial_{\Delta}\dot{\mathcal{\mu}}} &= \frac{\dot{\mathcal{\mu}}(t)}{\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{y}^{2}(t)}} + \frac{\dot{\mathcal{\mu}}(t)\mathbf{y}(t)}{\mathbf{R}_{3}\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{y}^{2}(t)}}; \\ \frac{\partial \mathbf{V}\mathbf{y}}{\partial \dot{\mathcal{\mu}}} &= \frac{\mathcal{\mu}(t)}{\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{x}^{2}(t)}} + \frac{\mathcal{\mu}(t)\mathbf{x}(t)}{\mathbf{R}_{3}\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{x}^{2}(t)}}; \\ \frac{\partial \mathbf{V}\mathbf{y}}{\partial \mathcal{\mu}} &= \frac{\dot{\mathcal{\mu}}(t)}{\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{x}^{2}(t)}} + \frac{\dot{\mathcal{\mu}}(t)\mathbf{x}(t)}{\mathbf{R}_{3}\sqrt{\mathcal{\mu}^{2}(t) - \mathbf{x}^{2}(t)}}; \\ \frac{\partial \mathbf{V}\mathbf{y}}{\partial_{\Delta}\dot{\mathcal{\mu}}} &= \frac{\dot{\mathcal{\mu}}(t)}{\mathbf{R}_{3}}; \\ \frac{\partial \mathbf{V}\mathbf{y}}{\partial_{\Delta}\dot{\mathcal{\mu}}} &= \frac{\dot{\mathcal{\mu}}(t)}{\mathbf{R}_{3}}. \end{aligned}$$

Зауважимо, що часткові похідні виразів (13, 14) і (17, 18) мають назву коефіцієнтів похибок. Розрахунки щодо визначення величин за виразами (17) – (20) наведені на графіках рис. 3.

Як виходить з наведених графіків, найбільші похибки промаху мають місце за рахунок невірних вимірювань далекості і радіальної швидкості об'єкта. Отже, забезпечення заданої точності далекомірно-швидкісних вимірювань є вкрай актуальною науково-технічною задачею.

Рис. 3. Похибки прогнозу в далекомірно-швидкісних каналах

Для визначення поправок до початкових умов руху скористаємося співвідношенням [7, 8]

$$\Delta \overline{\lambda}_{k} = \left(\underline{C}_{k}^{T} \underline{\Sigma}_{\lambda k} \underline{C}_{k} \right)^{-1} \underline{C}_{k}^{T} \underline{\Sigma}_{\lambda k} \Delta \overline{R}_{k} , \qquad (23)$$

де $\Delta \overline{R}_k = \overline{R}_{kp} - \hat{\overline{R}}_k$ – різниця між вектором розрахункових та виміряних значень навігаційних параметрів руху;

 $\Sigma_{\lambda k}$ – матриця дисперсій та коваріацій похибок визначення компонентів вектору стану.

Компоненти матриці <u>C</u> – це часткові похідні $\frac{\partial R_{ik}}{\partial \lambda_{ik}}$.

Далі знайдемо похибки прогнозу параметрів руху, що визначаються за формулою:

$$\Delta \overline{\lambda}_{mp_k} = \underline{B} \Big[\Delta \overline{R}_k, \underline{\Sigma}_{\lambda k} \Big] \cdot \Delta \overline{\lambda}_k , \qquad (24)$$

де <u>В</u> – оператор прогнозу вектору стану.

Оцінка точності отриманого результату, тобто якість прогнозу визначається матрицею:

$$\underline{\Sigma}_{\Delta\lambda\Pi p_k} = \underline{B}_k \underline{N}_k \underline{B}_k^{\mathrm{T}}, \qquad (25)$$

де <u>N_k</u> – діагональна матриця дисперсій похибок вимірювань навігаційних функцій. При цьому дану матрицю можна визначити із співвідношення [5,7]

$$\underline{\mathbf{N}}_{\mathbf{k}} = \underline{\mathbf{C}}_{\mathbf{k}} \underline{\boldsymbol{\Sigma}}_{\lambda_{\mathbf{k}} \text{ gon }} \underline{\mathbf{C}}_{\mathbf{k}}^{\mathrm{T}}.$$
(26)

Тут $\Sigma_{\lambda_{k,don}}$ – діагональна матриця допустимих дисперсій випадкових похибок оцінок вектору стану.

За допомогою одержаних формул було проведено моделювання процесу супроводу КА типу "Січ-1М" з використанням реальних початкових умов. Визначений взаємозв'язок між похибками вимірювальних каналів СРТС та якістю прогнозу компонентів вектору стану КА. Так при похибках вимірювання навігаційних функцій руху КА $\sigma_{д1} = 3$ м; $\sigma_{\dot{д}1} = 0,3$ м/с; $\sigma_{\Delta d1} = 0,3$ м; $\sigma_{\Delta \dot{d}_1} = 0,05$ м/с, похибки прогнозу на короткий часовий інтервал (до десяти хвилин) будуть дорівнювати $\sigma_{x np1} \cong \sigma_{y np1} \cong \sigma_{z np1} \cong 45,6$ м.

Якість прогнозу визначається наступними величинами: $\sigma_{\sigma_x npl} \cong \sigma_{\sigma_y npl} \cong \sigma_{\sigma_z npl} \cong 1,19 \text{ м.}$

А при похибках
$$\sigma_{\mu 2} = 2\sigma_{\mu 1}$$
; $\sigma_{\dot{\mu} 2} = 2\sigma_{\dot{\mu} 1}$; $\sigma_{\Delta \mu 2} = 2\sigma_{\Delta \mu 1}$; $\sigma_{\Delta \dot{\mu} 2} = \sigma_{\Delta \dot{\mu} 1}$;

похибки прогнозу будуть дорівнювати $\sigma_{x \pi p 1} \cong \sigma_{y \pi p 1} \cong \sigma_{z \pi p 1} \cong 92,37 \text{ м},$ а якість прогнозу буде визначатися наступними величинами: $\sigma_{\sigma_x \pi p 1} \cong \sigma_{\sigma_y \pi p 1} \cong 2,28 \text{ м}.$

Таким чином, як і слід було очікувати, якість балістичного забезпечення польоту КА, тобто похибки прогнозу вектору стану, пов'язані і в суттєвому ступеню визначаються похибками первинних траєкторних вимірів.

Висновок. Запропонований підхід до оцінки якості прогнозу дозволить в процесі сеансу зв'язку з КА прийняти рішення на проведення корекції параметрів його орбіти з метою забезпечення виконання їм задач за призначенням з необхідними показниками якості. Як показують розрахунки, точність прогнозу на короткий часовий інтервал змінюється пропорційно похибкам вимірювань поточних параметрів руху. У той час, як точність прогнозу на великий термін часу (порядку доби) залежить не тільки від точності вимірів, але й від закону змінювання оператора прогнозу вектору стану. Результати розрахунків свідчать про можливість забезпечення показників якості на потрібному рівні. При цьому зниження похибок первинних вимірів дозволить підвищити якість прогнозу у 1,9 рази.

ЛІТЕРАТУРА

- 1. Полет космических аппаратов: примеры и задачи / Ю.Ф. Авдеев, А.И. Беляков, А.В. Брыков и др. – М. : Машиностроение, 1991. – 272 с.
- Лисаченко І.Г., Роянов О.М., Чумак Б.О. Математична модель оптимальної обробки вимірювальної інформації при управлінні космічними апаратами по програмній траєкторії // 36. наук. пр. К.: НАНУ, Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова. 2005. Вип. 32. С. 131-136.
- 3. Роянов О.М. Метод оцінки динамічної похибки вимірювань параметрів руху космічного апарату з визначенням її достовірності // Зб. наук. пр. – Х.: ОНДІ ЗС. – 2005. – Вип. 2. – С. 86-91.
- 4. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем. – М.: Радио и связь, 1991. – 608 с.
- 5. Хомяков Э.Н. Измерительно-информационные радиосистемы. Х.: ХВВКИУ PB, 1985. – 220 с.
- Лисаченко І.Г., Чумак Б.О., Дремлюга О.В. Обгрунтування вимог до точності визначення параметрів руху літаючих об'єктів управління // Системи обробки інформації. – Х.: НАНУ, ПАНМ, ХВУ. – 2001. – Вип. 2 (12). – С. 86-90.
- 7. Хомяков Э.Н. Статистическая аттестация измерительных комплексов. *X.: XBBKИУ PB, 1987. – 70 с.*
- 8. Эльясберг П.Е. Определение движения по результатам измерений. М.: Наука, 1974. – 246 с.

Надійшла 20.03.2006

Рецензент: доктор технічних наук, старший науковий співробітник В.І. Антюфєєв, Об'єднаний науково-дослідний інститут ЗС України, Харків.