КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

УДК 541.8

УСТОЙЧИВОСТЬ КОМПЛЕКСОВ МЕДИ(II) С ЦЕЛЛЮЛОЗНЫМ КОМПЛЕКСИТОМ В СМЕСЯХ ВОДА–ДИОКСАН

© 2006 г. Л. В. Мирошник, Н. И. Коровникова, Ю. В. Шабадаш

Харьковский национальный университет им. В.Н. Каразина, Украина Поступила в редакцию 15.03.2005 г.

Выявлены комплексообразующие свойства целлюлозного комплексита по отношению к ионами меди(II) в смесях вода–1.4-диоксан. Определены стехиометрический состав, константы устойчивости комплексов меди(II) с гидроксамовыми группами полимера, построены диаграммы распределения их равновесного содержания в области pH 2.0–6.0, предложены возможные стереохимические конфигурации. Проанализировано влияние сольватационных параметров комплексита на процесс комплексообразования.

Несмотря наочевидную практическую значимость комплексообразующих волокон (комплекситов) [1], вопросы управления свойствами этих веществ все еще остаются малоизученными. Вместе с тем ряд публикаций указывает на существенную роль растворителя, с помощью которого можно влиять на селективность волокон в образовании комплексов с ионами металлов и их устойчивость [2-4]. Количественной мерой этих характеристик, как и для низкомолекулярных соединений, являются константы устойчивости высокомолекулярных комплексных соединений (ВМКС) [5], формирующихся между ионами металлов и функциональными группами полимера в различных растворителях или их смесях. В [6-8] было высказано предположение о том, что влияние растворителя на равновесия образования ВМКС с участием полимерных волокон целлюлозного комплексита ЦГ определяется эффектами сольватации-десольватации компонентов реакции. При этом отмечалось, что основное влиясольватация матрицы ние оказывает И комплексита в целом, в твердой фазе которого и происходит сам процесс. Этот фактор можно выявить путем сопоставления комплексообразующих свойств волокон в различных водно-органических средах.

Настоящая работа является продолжением исследований в этой области и посвящена изучению влияния состава смесей вода–1,4-диоксан (**ДО**) (x = 0.049, 0.17 и 0.32 мол. д. **ДО**) на устойчивость ВМКС меди(II) с целлюлозным комплекситом ЦГ, матрица которого содержит группы гидроксамовой кислоты и амидоксима. Сольватационные, ионообменные и протолитические свойства полимера описаны в [9, 10].

Равновесия комплексообразования и устойчивость ВМКС меди(II) с ЦГ изучали методами потенциометрического титрования, ИК-спектроскопии, спектроскопии диффузного отражения и магнетохимии. Сольватационные характеристики оценивали величинами набухания, удельного объема и по содержанию в полимере и ВМКС компонентов смесей. Значения этих величин определяли по приращению массы, объема воздушно-сухих образцов в условиях равновесия за счет поглощения ими растворителя, количество которого находили совместным применением методов сушки и рефрактометрии.

ЭКСПЕРИЕНТАЛЬНАЯ ЧАСТЬ

Потенциометрическое титрование в смесях вода-ДО выполняли методом отдельных навесок для растворов, содержащих полимер и хлорид меди(II) с постоянной концентрацией $c_{\rm M}^0$ соли ((3.1– 3.2) × 10⁻³ в воде; (1.6–1.8) × 10⁻³ моль/л в смесях), поддерживая хлоридом натрия ионную силу I == 0.05 моль/л, в интервале температур (298.15-343.15) К (±0.05 К) с шагом 15 К. Титрантом являлся раствор HCl с концентрацией 0.1 моль/л в смесях указанного состава. Параллельно в аналогичных условиях отдельно титровали комплексит ЦГ, хлорид меди(II) и растворы, не содержащие соль меди(II) и комплексит (холостой опыт). В соответствии с условиями кондиционирования [11] применяемая в экспериментах исходная форма ЦГ по [5] была смешанной (H/OH, Cl): протонированной (H) по группам гидроксамовой кислоты и оксииминным группам амидоксима и водородногидратно-солевой (H/OH, Cl) по амидоксимным, которая при титровании кислотой (pH < 4) также переходила в Н-форму [10] (в данных условиях к ней мы относим протонированные амино- и оксииминные группы амидоксима, рассматривая их как протонные кислоты) [12]. Методика измерения рН, калибровки стеклянных электродов в смесях и время установления равновесия соответствовали описанным в [9]. Концентрацию соли меди(II) в растворе определяли титриметрически, используя затем эти данные для расчета обменной емкости полимера по ионам меди(II) (g_m , ммоль/г) [5].

ИК-спектры образцов полимера и ВМКС в виде таблеток с KBr (1:30) регистрировали в интервале частот 4000-400 см⁻¹. Спектры диффузного отражения снимали на спектрофотометре СФ-18 (стандарт отражения BaSO₄). Процедура их построения с использованием функции Кубелки-Мунка в координатах $F(R_d) = f(\lambda) (R_d - \text{относи-}$ тельное диффузное отражение образца при данной длине волны λ) аналогична приведенной в [13, 14]. Магнитную восприимчивость измеряли методом Фарадея (T = 295 K), рассчитывая затем значения эффективных магнитных моментов $(\mu_{\mbox{\tiny 2}\mbox{ϕ}},\,M.Б.)$ образцов ВМКС [14]. Относительную набухаемость (W, %), удельный объем (V_{yg} , мл/г) определяли по методикам [5, 9, 15]. Величину V_{уд} рассчитывали с учетом плотности образцов в сольватированном остоянии, измеренной пикнометрическим методом [15]. Суммарное содержание воды и ДО, поглощенных навеской полимера или ВМКС из смесей в области рН 2.0-6.0, определяли высушиванием образцов до постоянной массы при 145-150°С в течение 5 ч. Выбор режима сушки основывался на данных о термостабильности полимера и его солевых форм [16]. Концентрацию ДО в исходных смесях и равновесных растворах определяли рефрактометрически по калибровочной кривой зависимости показателя преломления раствора n_D от концентрации ДО. Значения *п*_D сверяли с табличными [17]. Затем по [15, 18] рассчитывали содержание компонентов смеси, поглощенных полимером и ВМКС.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ИК-спектры H/OH, Cl, H- и OH- (щелочной) форм комлпексита ЦГ, обработанного водными растворами, смесями воды с метанолом (МеОН) или диметилсульфоксидом (ДМСО) в интервале рН 2.0-12.0, рассматривались в работах [6-8, 13, 14, 16]. Они идентичны спектрам образцов, полученных нами при контакте полимера со смесями вода–ДО. В них [19], как и в спектрах указанных выше систем, имеются характерные полосы поглощения при 3600-3200, 1680-1650, 1550, 940-930 и 900-890 см⁻¹, обусловленные валентными колебаниями NH- и OH-групп в амидоксимах и гидроксамовых кислотах, валентными колебаниями связей C=O, NH₂, C=N в монозамещенных амидах, C=O и C=N в гидроксамовых кислотах (полуторные связи в молекуле кислоты [8]), N-O- в амидоксимных и гидроксамовых группах соответственно. Сложное строение и полифункциональность волокна приводят к суперпозиции характеристических частот спектра, что затрудняет выявление мест локализации координационной связи в ВМКС. Для их идентификации доступными остаются лишь некоторые области спектра полимера. Так, при введении ионов меди(II) в комплексит независимо от рН раствора и состава смесей вода-ДО происходит сближение и наложение частот 1700–1600 и 1550 см⁻¹ с образованием уширенной полосы, смещенной в низкочастотную область, а также снижение интенсивности поглощения при 900-890 см⁻¹ вплоть до исчезновения этой полосы с ростом степени закомплексованности волокна. Аналогичные изменения наблюдаются в спектрах комплексов гидроксамовых кислот [7]. По-видимому, подобные координационные центры формируются и в фазе полимера, тем более что оптимальная область образования медных комплексов с амидоксимами соответствует pH \geq 5–6 [20, 21]. Кроме того, из данных [19, 20] следует, что они менее устойчивы, чем аналогичные комплексы гидроксамовых кислот. Общей особенностью ИКспектров ЦГ и ВМКС в смесях H₂O–ДО является наличие полосы поглощения 1150–1130 см⁻¹, характерной для 1,4-диоксанового цикла, возникающей за счет сольватации молекулами ДО протонированных амидоксимных групп, специфической сольватации комплексита (образование Н-связей между молекулами ДО и матрицей, ДО и функциональными группами) [10, 11, 19] либо участия ДО в формировании координационных узлов ВМКС.

Константы устойчивости (K_{vcr}) ВМКС меди(II) в смесях определяли по методу Бьеррума-Грегора [5-8], используя данные потенциометрического титрования (рН 2.0-6.0). Характер кривых титрования комплексита и соли меди(II) по сравнению с холостым опытом свидетельствует о протонировании амидоксимных групп полимера [9, 10] и отсутствии при р $H \le 5$ в растворах соли меди(II) заметных количеств гидроксокомплексов и комплексов с лиат-ионами соответственно. Кривые титрования ЦГ в присутствии соли меди(II) смещаются в область более низких значений рН по сравнению с кривыми полимера вследствие вытеснения протонов гидроксамовых групп ионами металла (М). Согласно этим закономерностям, в основу расчета констант положен материальный баланс по иону водорода [6-8], из которого определяли равновесные концентрации вступивших в комплексообразование гидроксамовых групп [HL] и значения функции образования *n*. Кривые образования ВМКС (рис. 1, кривые 1-4) имеют резкий наклон, связанный с кооперативным характером процесса [5, 21] и свидетельствуют о формировании в волокне среднестатистических координационных центров стехиометрического состава M:L = 1:1. Константы комплексообразования B_1 равновесия HL + $M^{2+} \Leftrightarrow LM^+$ + H^+ находили при $\bar{n} = 0.5$. Для расчета $K_{\text{уст1}} = B_1 K_0$ использовали зна-

чения констант диссоциации K_0 гидроксамовых групп ЦГ [9]. Величину $\Delta G_{\rm ycr}$ рассчитывали из соотношения $\Delta G_{\rm ycr} = -2.303$ RT lg $K_{\rm ycr}$. Аппроксимацией линейной зависимости $\Delta G_{\rm ycr} = f(T)$ по МНК определяли усредненные для данного интервала температур условные значения термодинамических характеристик комплексообразования (табл. 1). Значения lg $K_{\rm ycr 1}$ рассчитаны с погрешностью ± 0.2 ед. lg K. Погрешности определения термодинамических характеристик в смесях составляют для $\Delta G_{\rm ycr}$ (кДж/моль) ± 1.2 (x = 0.0; 0.17); ± 1.1 (x = 0.049), ± 1.0 (x = 0.32); для $\Delta H_{\rm ycr}$ (кДж/моль) ± 14 (x = 0.0), ± 13 (x = 0.049), ± 15 (x = 0.17), ± 12 (x = 0.32); для $\Delta S_{\rm ycr}$ (Дж/(моль·К)) ± 38 (x = 0.0; 0.32); ± 37 (x = 0.049), ± 48 (x = 0.17).

Известно [12, 22-24], что увеличение значений $K_{\rm vcr}$ низкотемпературных комплексных соединений (НМКС) с ростом х в смесях обычно связывают с влиянием физических свойств среды (относительная диэлектрическая проницаемость растворителя (є), химической природы растворителя, его структуры, сольватационными характеристиками и пересольватацией частиц, а также с действием фактора разбавления. На равновесия образования ВМКС дополнительно немалое воздействие оказывают специфическая сольватация комплексита и "полимерные" эффекты, обусловленные его кооперативной природой [5–11, 19]. Учесть вклад и разграничить влияние каждого из них в сложных гетерогенных системах, подобных изучаемой, достаточно трудно. Однако формально роль полимерной цепи и растворителя можно выявить путем сопоставления значений $\lg K_{\rm vcr}$ ВМКС и зависимости их от 1/є с аналогичными данными для НМКС. Различия между этими показателями объясняют эффектом цепи, а нелинейность зависимости – влиянием сольватационного фактора. Согласно [24], выражением доминирующей роли фактора разбавления являются линейная зависимость вида $\lg K_{\rm ycr} = \lg K'_{\rm ycr} - \lg [H_2O] (\lg [H_2O]$ логарифм молярной концентрации воды в сме-

Рис. 1. Кривые образования $\bar{n} = f(\lg[HL]/[H^+])$ ВМКС-Си²⁺ в смесях вода-диоксан (T = 298.15 K) с x = 0.0 (1, 1'), 0.049 (2, 2'), 0.17 (3, 3'), 0.32 (4, 4'). Кривые 1'-4' рассчитаны с учетом значений V_{yg} ЦГ и ВМКС.

сях) и постоянство рассчитанных с учетом разбавления величин $\lg K'_{\rm vcr}$.

Из табл. 1 следует, что значения $\lg K_{\rm уст 1}$ ВМКС меди(II) в смесях больше, чем в воде, и не совпадают с $\lg K_{\rm уст 1}$ медных комплексов гидроксамовых кислот [25]. Зависимость $\lg K_{\rm уст 1} = f(1/\varepsilon)$ для ВМКС (ε см. в табл. 2) в отличие от аналогичной зависимости для НМКС нелинейная и имеет экстремальный характер. Не проявляется действие и фактора разбавления: величины $\lg K'_{\rm уст 1}$ (T = 298.15 K), рассчитанные с учетом параметра $\lg [H_2O]$, равного 1.74 (x = 0.0), 1.65 (x = 0.049), 1.46 (x = 0.17), 1.25 (x == 0.32), не постоянны. Принимая во внимание вы-

	$\lg K_{ m yct}$				$-\Delta G_{ m ycr},$ кДж/моль					
X	Т, К					Τ,	<i>ΔН_{уст},</i> кДж/моль	ΔS _{уст} , Дж/моль К		
	298.15	313.15	328.15	343.15	298.15	313.15	328.15	343.15		
0.00	7.8	7.8	7.7	7.6	44	47	48	50	0	150
0.049	9.2	9.5	9.3	10.5	53	57	58	69	50	340
0.17	8.4	9.2	9.0	10.1	48	55	57	66	70	380
0.32	10.2	10.5	10.8	11.0	58	63	68	72	40	320

Таблица 1. Значения логарифмов констант и термодинамических характеристик устойчивости ВМКС комплексита ЦГ с ионами меди(II) в смесях вода–диоксан (*I* = 0.05)

x	100/e	pH	Комплексит			BMC			$\log K^*$	108*
			m_1	<i>m</i> ₂	V _{уд}	m_1	<i>m</i> ₂	$V_{ m yg}$	¹ g Λ_{yct1}	¹ SP _{yct}
0.00	1.27	5.31	_	1.15	18.7	_	0.72	15.1	7.7	14.0
		4.35	_	0.85	18.5	-	0.68	13.0		
		3.52	_	0.75	18.1	-	0.62	16.0		
		2.51	-	0.95	19.7	-	0.68	18.0		
0.049	1.62	5.43	0.45	0.43	12.0	0.33	0.15	8.5	7.9	13.8
		4.51	0.40	0.35	9.5	0.34	0.15	9.0		
		2.95	0.45	0.35	8.2	0.35	0.14	6.5		
		2.47	0.50	0.33	15.7	0.38	0.15	13.6		
0.17	2.78	5.25	0.55	0.25	8.0	0.40	0.18	7.7	7.9	14.4
		4.53	0.60	0.27	8.3	0.38	0.15	8.1		
		2.85	0.68	0.33	9.5	0.41	0.14	9.0		
		2.32	0.85	0.38	17.0	0.45	0.16	16.0		
0.32	5.24	4.47	0.98	0.35	11.0	0.58	0.19	10.6	10.0	16.4
		3.75	1.10	0.38	15.0	0.60	0.16	11.6		
		3.38	1.18	0.45	18.3	0.61	0.18	15.0		
		2.53	1.35	0.48	26.1	0.68	0.20	20.0		

Таблица 2. Сольватационные параметры комплексита ЦГ и его ВМКС с ионами меди(II), используемые при расчете значений констант устойчивости в смесях вода-диоксан

шеизложенное, можно заключить, что характер изменения $\lg K'_{vcr 1}$ ВМКС меди(II) в зависимости от состава смесей определяется соотношением влияния двух факторов: "полимерных" и сольватационных эффектов, значимость которых, по данным [23], подтверждается также отсутствием линейности в изменении величин $\lg K_{vcr 1}$ BMKC меди(II) с уменьшением є для разных смешанных сред [6-8]. Так, смесь вода-ДО (*x* = 0.32) оказывает примерно одинаковое со смесью вода-МеОН $(x = 0.83, \varepsilon = 37.9)$ стабилизирующее влияние на устойчивость медных комплексов с ЦГ, хотя значение є последней заметно выше. В то же время при близких значениях ε смесей вода-ДО (x == 0.17) и вода-MeOH (x = 0.83) величины $\lg K_{vcr 1}$ этих ВМКС в них различаются более чем на два порядка. Из общих представлений [12, 22-24] и литературных данных (хотя и довольно противоречивых) о дестабилизации аквакомплексов меди(II) при добавках ДО к воде и сопоставимой с водой сольватирующей способности молекул ДО к катионам, но очень слабой к анионам [23, 26, 27], о специфической сольватации молекулами ДО целлюлозы [28], а также из сведений о структурных изменениях смесей в области x = 0.15-0.30 [20] и нелинейном характере изотерм зависимости $\lg K_0 - 1/\epsilon$ для ЦГ [9] можно предположить, что резкий "перепад" значений lg K_{уст 1} ВМКС в интервале составов x = 0.0-0.17 связан: 1) с ослаблением сольватации ионов мели(II) в смеси и специфической сольватацией полимерного лиганда молекулами ДО [9], изменяющей силу поля, создаваемого функциональными группами волокна, что может способствовать участию ДО в формировании BMKC (x = 0.040) [30]; 2) со структурными изменениями смеси при x = 0.17, вследствие чего возможны пересольватация частиц и перестройка координационных центров ВМКС за счет вхождения в их сферу молекул ДО. Полагая линейным участок зависимости $\lg K_{\text{vcr 1}} - 1/\epsilon$ в области x = 0.17 - 0.32 можно считать, что процесс пересольватации при x > 0.2 завершается, а дальнейшие добавки ДО лишь снижают є. В результате происходит резкий рост значений $\lg K_{\text{уст 1}}$ (*x* = 0.32) (табл. 1). Обращает на себя внимание идентичность характера изотерм зависимостей lg K_{vct 1} – $-1/\varepsilon$ и $\lg K_0 - 1/\varepsilon$ для гидроксамовых групп ЦГ [9]. Косвенно это свидетельствует о существенном влиянии на устойчивость ВМКС эффектов сольватации полимерного лиганда и пересольватации участвующего в реакции протона. Проявление последней зависит также от степени "перезарядки" комплексита, возникающей из-за увеличения количества протонированных амидоксимных групп в кислой среде. Этот фактор, как известно [5], заметно влияет на устойчивость ВМКС гелевой структуры. С ростом температуры (313.15–343.15 К) различия между значениями $\lg K_{\text{vcr 1}}$ в смесях с x =

= 0.049 и 0.17 становятся меньше, "сглаживается" минимум на кривых $\lg K_{\rm vcr 1} - 1/\epsilon$ (x = 0.17), что обусловлено структурными изменениями растворителя, которые под действием температуры довольно эффективны в области малых значений х [29]. В связи с этим уже при *x* = 0.049 усиливается пересольватация, область которой расширяется вплоть до x = 0.17, и в интервале составов 0.049-0.17 происходит полная стабилизация сольватных оболочек ионов металла и лиганда, сопровождающаяся увеличением значений $\lg K_{vcr 1}$ (табл. 1). Эффект пересольватации и рост набухаемости (x = 0.17) в указанном интервале температур [10, 19], по-видимому, являются причиной резкого изменения значений $\Delta G_{\rm ycr}, \Delta H_{\rm ycr}, \Delta S_{\rm ycr}$ при переходе от водной системы к смесям $H_2O-ДO$ с x = 0.049 и 0.17 (табл. 1). Из этих данных следует, что термодинамика процессов комплексообразования, как и состояние протолитических равновесий в смесях вода/ДО [9], определяется (подобно водным системам) энтропийной составляющей энергии Гиббса, тогда как в смесях воды с МеОН или ДМСО вклад ΔH_{yct} , ΔS_{yct} соизмерим [6–8].

Роль сольватационного фактора проявляется при анализе величин W, V_{уд} и данных о сорбции компонентов смешанного растворителя полимером и ВМКС в условиях равновесия [10, 18]. С ростом х набухаемость комплексита увеличивается (pH 2.0-6.0) (рис. 2) [10]. Для ВМКС в интервале рН 2.5-6.0 она всегда меньше, чем у полимера, но заметно сближается с его величиной при рН ≤ 2, вероятно, из-за резкого снижения значений g_m, что свидетельствует о тенденции к прекращению реакции комплексообразования. В то же время различия значений g_m в смесях более чем на 0.5 ммоль/г [19] практически не отражаются на величине W для BMKC, малые изменения которой с ростом x (рис. 2, кривые l', 2') не коррелируют с содержанием меди(II) в полимере, а зависят, как и в случае ЦГ, от соотношения поглощенных образцами компонентов смешанного растворителя $m_1: m_2 (m_1 - \text{содержание ДO}, m_2 - \text{со$ держание воды в г/г воздушно-сухого образца) (табл. 2). Величина W для ЦГ при x > 0.0 возрастает, вероятно, за счет преимущественной сорбции молекул ДО ($m_1 > m_2$), являющейся результатом избирательной сольватации протонированных амидоксимных групп [10], специфической сольватации матрицы [28] и Н-форм незаряженных групп [18] (гидроксамовых и оксииминных), концентрация которых в волокие в области рН 2.0-6.0 существенно выше концентрации протонированных групп [10]. Следуя этого гипотезе, низкую набухаемость ВМКС по сравнению с ЦГ можно объяснить уменьшением исходной концентрации Н-форм гидроксамовых групп из-за их участия в образовании ВМКС, а близкие значения W в смесях разно-

Рис. 2. Зависимость набухаемости W комплексита ЦГ (1, 2) и ВМКС (l', 2') от рН среды в смесях вода-диоксан (T = 298.15 K, I = 0.05) с x: 0.049 (1, l') и 0.32 (2, 2').

го состава – преимущественным вкладом в общий эффект набухания ВМКС сольватационных параметров комплексита, компенсирующих разность энергий сольватации полимерных комплексов и ионов меди(II) при переходе их из воды в смешанный растворитель [22]. Эти или иные альтернативные объяснения требуют независимых дополнительных данных, подтверждающих объективность приведенных интерпретаций.

Полученные результаты указывают на целесообразность учета эффектов сольватации в реакциях образования ВМКС с участием полимерных лигандов волокнистой структуры. Косвенно их влияние можно выявить, применяя подход, описанный в [10]. Для этого нами в расчетах параметров равновесия использовались величины $V_{\rm yg}$ комплексита и ВМКС (табл. 2). Результаты расчетов свидетельствуют (T = 298.15 K): 1) о формировании в полимере координационных узлов состава M:L = 1:1 и 1:1 ($\bar{n} > 1.2-1.3$; рис. 1, кривые l'-4'); 2) о различии значений $\lg K_{\rm ycr 1}$ и $\lg K_{\rm ycr 1}^*$ (табл. 1, 2) и характера их зависимостей от 1/г. Величина $K_{\text{уст 1}}^* = B_{1}^*/\overline{K}_{0}^{'}, \beta_{\text{уст}}^* - суммарная констан$ та устойчивости, равная произведению ступенчатых констант устойчивости K^*_{ycr1} , K^*_{ycr2} , рассчитанная из выражения $\beta_{ycr}^* = B_2^* / (\overline{K}_0')^2$, значения \overline{K}_0 взяты из [10]. Константы B_1^* и B_2^* равновесия $2HL + M^{2+} \Leftrightarrow L_2M + 2H^+$ определяли из суммарного уравнения Бьеррума, связывающего их с л и [HL]/[H⁺] [5, 14] и учитывающего образование комплексов максимального состава 1:2 [21]. Значения B_1^* и B_2^* находили алгебраически, методом МНК. Затем, используя K^*_{ycr1} и β^*_{ycr1} , рассчитыва-

Рис. 3. Диаграмма распределения равновесного содержания (α , % = $(c_{\phi o p M b l}/c_M^0) \cdot 100\%$) комплексных форм полимера BMKC–Cu²⁺ состава M : L = 1 : 1 (*I*– 4) и 1 : 2 (*I'*–4') в зависимости от pH в смесях вода–диоксан (*T* = 298.15 K) при *x*: (*I*–4) и 1 : 2 (*I'*–4') в зависимости от pH в смесях вода–диоксан (*T* = 298.15K) при *x*: 0.0 (*I*, *I'*), 0.049 (2, 2'), 0.17 (3, 3') и 0.32 (4, 4').

Рис. 4. Спектры диффузного отражения комплексита ЦГ (1), CuCl₂·2H₂O (2) и ВМКС–Cu²⁺ при x = 0.0 (3), 0.049 (4), 0.17 (5), 0.32 (6).

ли диаграммы равновесных содержаний (α , % = $(c_{\phi o p M b l}/c_M^0) \times 100\%$) комплексных форм полимера (BMKC-Cu²⁺ при M:L = 1:1 и 1:2) в области pH 2.0–6.0 (рис. 3).

Нелинейная зависимость $\lg K^*_{ycr 1}$, $\lg \beta^*_{ycr}$ и ($\lg \beta^*_{ycr} - \lg K^*_{ycr 1}$) – второй ступени комлексообразования от $1/\varepsilon$ – подтверждает значимое влияние сольватационного фактора, действие которого приводит к эффектам пересольватации частиц (x = 0.049, 0.17) для обеих ступеней реакции и суммарного процесса в целом. "Сглаживание" на этих зависимостях (по сравнению с $\lg K_{vcr 1} - 1/\varepsilon$; табл. 1) экстремальных точек при x = 0.049 и/или 0.17, вероятно, обусловлено взаимной компенсацией энергий сольватации реагентов за счет противоположной направленности действия этих эффектов [24]. Вместе с тем, учет параметра $n \lg [H_2O]$ для ступенчатого равновесия (n = 1) и равновесия суммарного процесса (n = 2) приводит к постоянству значений констант устойчивости только первой ступени комплексообразования в интервале состава смесей x = 0.0-0.17. По-видимому, рост $\lg K_{ycr 1}^*$ с увеличением *x* определяется преобладающим действием фактора разбавления. Установленные закономерности не противоречат, а скорее дополняют рассмотренные выше предположения. При этом нелинейная зависимость констант устойчивости обоих типов (табл. 1, 2) от параметра $n \lg[H_2O]$ с изменением состава также может быть согласно [24] признаком влияния эффектов пересольватации комплексита и ВМКС. связанных с формированием или перестройкой их координационной сферы при участии молекул ДО. Их координации способствует иная по сравнению с раствором "среда" (снижение значений є, возрастание основности ДО {18, 27, 28]), формирующая в фазе волокна за счет "концентрирования" молекул ДО при избирательной сорбции их полимером с ростом *х* (табл. 2).

О включении ДО в состав ВМКС свидетельствуют спектры комплексов, полученных из водной среды и смесей при рН 3.7-4.0 (рис. 4) и имеющих близкие значения $g_m = 0.4-0.5$ ммоль/г. По данным диаграммы (рис. 3), эта область рН отвечает максимальному содержанию BMKC M:L = 1:1 и 1:2 при x = 0.0, 0.049, 0.32 и 0.17 соответственно. Сопоставление наших и литературных данных по спектрам солей меди(II) в воде и смесях вода-ДО $(\lambda = 700-800 \text{ нм})$ [23, 30], а также спектром медных комплексов гидроксамовых кислот с координацией типа О,О (λ = 630-650 нм) [31] свидетельствует о том, что отличие спектров хлорида меди(II) и ВМКС (кривые 2, 3) обусловлено внедрением в сферу комплекса наряду с молекулами воды гидроксамовых групп полимера, а гипсохромное смещение и увеличение интенсивности полосы поглощения ВМКС в смеси с x = 0.049(кривая 4) – образованием координационных узлов с участием молекул ДО [30]. Снижение (x == 0.17) и возрастание (x = 0.32) интенсивности полос поглощения комплексов (кривые 5, 6) с тенденцией для обеих систем по сравнению со смесью х = 0.049 к батохромному сдвигу, вероятно, вызвано накоплением ВМКС M : L = 1 : 2 (рис. 3, x = 0.17), пе-

ресольватацией частиц, перестройкой их координационной сферы с образованием смешанных сольватов в первом случае и ростом по сравнению со смесью x = 0.17 концентрации ВМКС М:L = 1:1 (рис. 3, x = 0.32), содержания в них ДО (табл. 2) – во втором, усиливающего внутри-и/или внешнесферную координацию молекул органического компонента [23, 30]. Спектры комплексов не идентичны. Они не имеют четких максимумов и определенной направленности в смещении полос поглощения с увеличением х. По-видимому, исследованные ВМКЧС нельзя считать изоструктурными. Подтверждени-ются усредненными, и при x = 0.0, 0.49, 0.17 и 0.32 составляют 1.84 (2.07 по [32] при g_m = 1.1 ммоль/г), 2.12, 1.96 и 2.02 М.Б. соответственно.

Полученные данные позволяют предположить образование среднестатистических плоскоквадратных (x = 0.0), октаэдрических (x = 0.049), смеси плоскоквадратных и тетраэдрических структур ВМКС (x = 0.17) с тенденцией к формированию последних в смеси с x = 0.32. Количество и соотношение этих структур, по-видимому, будет определять ширину полос поглощения в спектрах и возможность их гипсо- либо батохромного смещения. Тип, взаимные превращения конфигураций, совместное присутствие различных видов структур в полимере, а также среднестатистических – усредненный – характер количественных характеристик комплексообразования с участием комплексита ЦГ связаны с эффектом цепи [5, 7]. Ее химическая природа и структура определяют доступность, взаимные влияния (эффект "соседа") и конфигурацию функциональных групп, благоприятное расположение которых для образования ВМКС зависит от сольватационных характеристик комплексита. Влияние последнего фактора проявляется во взаимосвязи изменения характера набухаемости, являющейся косвенной характеристикой полимера [5, 15, 18], с устойчивостью, концентрацией комплексов, превращениями их стереохимических структур: увеличение набухаемости комплексита в интервале составов смесей x = 0.0-0.32 (рис. 2) [10] сопровождается ростом констант устойчивости ВМКС (табл. 2), концентрации комплексов M:L = = 1:1 (рис. 3), а также переходом от тетрагональных конфигураций комплексов при низких значениях W к тетраэдрическим, характерным для НМКС меди(II) [31], когда набухаемость полимера максимальна. Мы полагаем, что эти факты объясняются доминирующим влиянием сольватационных параметров комплексита на свойства образующихся ВМКС. Предложенная версия, конечно, является одной из возможных и может быть проверена сравнением полученных в работе результатов с аналогичными для более широкого круга различных водно-органических смесей.

Работа выполнена при финансовой поддержке Фонда фундаментальных исследований Украины (грант 3.4/455).

СПИСОК ЛИТЕРАТУРЫ

- 1. Саввин С.Б., Дедкова В.П., Швоева О.П. // Успехи химии. 2000. Т. 69. № 3. С. 203.
- 2. Перепелкин К.Е. // Журн. Рос. хим. об-ва им. Д.И. Менделеева. 2002. Т. 46. № 1. С. 31.
- 3. *Мирошник Л.В., Александров А.В., Тарасенко Л.Н.* // Укр. хим. журн. 1991. Т. 57. № 6. С. 667.
- Miroshnik L.V., Korovnikova N.I. // III International Conf. "Electronic processes in organic materials": Abstracts, Kharkov, 2000. P. 157.
- Салдадзе К.М., Копылова-Валова В.Д. Комплексообразующие иониты (комплекситы). М.: Химия, 1980. 336 с.
- 6. Мирошник Л.В., Александров А.В., Толмачев В.Н. // Укр. хим. журн. 1989. Т. 55. № 12. С. 1250.
- 7. Miroshnik L.V. // J. Mol. Liquids. 2001. V. 91. P. 245.
- 8. *Александров А.В.* Дис. ... канд. хим. наук. Харьков: Харьк. гос. ун-т, 1998.
- 9. *Мирошник Л.В., Коровникова Н.И. //* Журн. физ. химии. 2000. Т. 74. № 9. С. 1613.
- 10. *Мирошник Л.В., Коровникова Н.И.* // Журн. неорган. химии. 2002. Т. 47. № 8. С. 1378.
- 11. *Мирошник Л.В., Коровникова Н.И. //* Журн. прикл. химии. 2000. Т. 73. № 1. С. 42.
- 12. Измайлов Н.А. Электрохимия растворов. Харьков: Изд-во ХГУ, 1959. 958 с.
- 13. Дубына А.М., Мирошник Л.В., Толмачев В.Н. // Высокомолек. соед. 1976. Т. 18Б. № 7. С. 526.
- 14. Мирошник Л.В., Дубына А.М., Толмачев В.Н. // Коорд. химия. 1980. Т. 6. № 6. С. 870.
- 15. Полянский Н.Г., Горбунов Г.В., Полянская Н.Л. Методы исследования ионитов. М.: Химия, 1976. 208 с.
- Толмачев В.Н., Дубына А.М., Мирошник Л.В., Баник В.В. // Высокомолек. соед. 1979. Т. 21А. № 4. С. 777.
- Афанасьев В.Н., Ефремова Л.С., Волкова Т.В. Физико-химические свойства бинарных растворителей. Водосодержащие системы. Иваново: РАН ИХР, 1998. 413 с.
- 18. Лещенко В.П., Куриленко О.Д. // Укр. хим. журн. 1970. Т. 36. № 1. С. 44.
- 19. Коровникова Н.И. Дис. ... канд. хим. наук. Харьков: Харьк. нац. ун-т, 2002.
- Юферова И.Б., Фадеева В.И., Тихомирова Т.И., Кудрявцев Г.В. // Журн. неорган. химии. 1989. Т. 34. № 2. С. 361.
- 21. *Miroshnik L.V.* // Functional material. 1999. V. 6. № 4. P. 715.
- 22. *Крестов Г.А.* Термодинамика ионных процессов в растворах. Л.: Химия, 1973. 302 с.
- 23. *Бургер К.* Сольватация, ионные реакции и комплексообразование в неводных средах. М.: Мир, 1984. 256 с.

- 24. *Федоров В.А., Белеванцев В.И. //* Журн. неорган. химии. 2003. Т. 48. № 4. С. 680.
- 25. Агравал И.К. // Успехи химии. 1979. Т. 48. № 10. С. 1173.
- 26. *Lewandowski A.* // Electrochim. Acta. 1986. V. 31. № 1. P. 59.
- 27. *Манин Н.Г., Курбатов И.Б., Королев В.П. //* Журн. физ. химии. 1999. Т. 73. № 3. С. 470.
- 28. *Мясоедова В.В., Марченко Т.Н., Крестов Г.А.* Физическая химия неводных растворов целлюлозы и ее производных. М.: Наука, 1991. 225 с.
- 29. Белоусов В.П., Панов М.Ю. Термодинамика водных растворов неэлектролитов. Л.: Химия, 1983. 265 с.
- 30. Боос Г.А., Сальников Ю.И., Кудряшова С.В. // Коорд. химия. 1996. Т. 22. № 2. С. 157.
- 31. *Karlil č ek R., Majer I. //* Collect. Czech. Chem. Commun. 1972. V. 37. № 1. P. 151.
- 32. Мирошник Л.В., Дробницкая Н.В. // Синтез и физико-химия полимеров. Киев: Наук. дум. 1975. Вып. 15. С. 12.