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MODELING THE MOVEMENT

OF HETEROGENOUS FLOWS OF PEOPLE

AS A GEOMETRIC DESIGN PROBLEM
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Abstract. The problem of modeling the movement of heterogenous flows of people is shown to be

one of the topical applied problems of the geometric design class. The article proposes

a mathematical model, methods, and algorithms for modeling the movement of heterogenous flows

of people based on the local optimization methods for the movement of geometric objects taking into

account changes in their spatial shape and metric characteristics. These algorithms are based on

an analytical description of the conditions for non-intersection of objects taking into account their

continuous transitions and rotations.

Keywords: configuration space, generalized variables, placement, modeling of the movement of
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INTRODUCTION. PROBLEM STATEMENT

The problems of placement, coverage, and partition, which serve as models for many relevant practical problems,

belong to the class of geometric design problems that are reduced to the optimized mapping of the input geometric

information into a certain abstract set of the corresponding structure by performing the given set of constraints.

One of such problems is the problem of heterogenous people flow movement that allows us to promptly estimate

the time that people were moving and to make a decision on safe passages.

Even today, models and methods of people and vehicle flow movement stay relevant for sectors whose

formalization is not enough to implement available models and methods, which is stipulated by the need to take the

features of the subject area into account. This also determines the need for constructing new mathematical models,

formulating problem statements, and developing new efficient methods and algorithms for their solution.

In this article, we constructed a mathematical model for one separate problem of this class based on the analysis of

current problems of modeling human flow movement whose features determine its solving approaches and allow us to

use the known methods while developing new methods and algorithms.

ANALYZING LATEST RESEARCH AND PUBLICATIONS

The individualistic human movement flow models represent human flow as a set of individuals in the form of

geometric shapes taking into account their form and metric characteristics. The change in the comfortability of human

flow movement depends on both the forms of objects and on the feasible distance between individuals [1, 2].
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The change in the spatial form of an object under forceful actions can be formalized by representing the human

body projection in the form of complex objects forming a combination of ellipses where the main one is performing

a continuous rotation within the maneuverability angle, while the auxiliary ones are making continuous rotations around

the “adhesion” points of auxiliary ellipses with the main one taking into account anthropological restrictions [2].

To characterize the mutual positioning of individuals in a human flow, the conditions of pairwise non-intersection

of geometric objects [2, 3] are used. Special coefficients [2] are used to calculate velocity, maneuverability, and deviation

from the main movement direction.

Based on the results of analyzing program packages of human flow movement modeling, there are no individualistic

human flow movement models that would be adequate to the real flow [4]. The relevance of such models is stipulated by

the need for studying the movement of people with restricted mobility in a mixed flow in a significantly broad

nomenclature of public buildings of different functional fire hazard classes.

CONFIGURING SPACE AND GENERAL CHANGES

IN THE PROBLEM OF COMPLEX GEOMETRIC SHAPE

PLACEMENT. PLACEMENT CONFIGURATION

Configuration space of geometric objects is based on formalizing the geometric information concept. Geometric

information G s u� ( , , ){ } { } { }� on the ellipse E includes data about its spatial form { }s , metric characteristics { }a b, (a

and b are ellipse semi-axes), and placement parameters { }u . Let us represent the spatial form { }s of the geometric object

by its boundary equation in the form f u( , )� � 0 where u x y� ( , , )� and � � ( , )a b are constants characterizing its

mathematical properties, which we call parameters of spatial form s of the object.

Let us connect a coordinate eigensystem to an object E with the system origin being object poles. In the case of

affine transformations, object movement changes the placement of its coordinate eigensystem in relation to the fixed

coordinate system of the space R
2

. To characterize this state, let us determine the placement parameters u x y� ( , , )�

where � � ( , )x y is the translation vector in relation to the fixed coordinate system and � is the rotation angle.

Let us construct the configuration space � E of the object E with generalized variables, namely, metric parameters

� � ( , )a b and placement parameters u x y� ( , , )� . Then, each point G u a b x y� �( , ) ( , , , , )� � of the configuration

increment � E determines the geometric object E G R( ) �

2

.

Let us perform parametrization on the subset S E E Ei c

i

l

i

r

i
� { }, , , i I nn� � { }1 2, , ,� . Using theoretical and set

operations, let us construct the following complex object:

H E E Ei c

i

l

i

r

i
� � � .

(1)
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i
, E

l

i
, and Er

i
base objects.
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i
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i
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c
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c

i
a b� ( , ) and placement parameters
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c

i

c

i

c

i
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i
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i
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l

i
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i
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l
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i
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a b� ( , ) and placement parameters u x y
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r

i
� ( , , )� , respectively.

Let � � �{ }H H H Hi n1 2

, , , , ,� be the output set of geometric objects with generalized variables G uii

i

ii

i

ii

i
� ( , )� ,

ii c l r� , , ; i n� �1 2, , , , and let { }s s sc l r, , be a set of their feasible spatial forms (in this case, ellipses). Each point

G Hii

i

i��( ) corresponds to a parametrized geometric object H G Ri ii

i
( ) �

2

. The configuration space has the form

�� � � �� � � �H H H n1 2

� with the generalized variables G G G Gc

i

l

i

r

i
� ( , , ), i n�1 2, , ,� .

Using theoretical and set operations, let us form a complex geometric object S P H H H Hp i n� ( , , , , , )

1 2

� �

( )S H H H Hp i n�
1 2

� �� � �� � . The operator P S p: � 	 determines the structure of the complex object. Then,

the complex object S p in the configuration space �� corresponds to the parametrized geometric object

S H G G G H G G G P H G G
p

c l r n c

n

l

n
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c l
( ( , , ), , ( , , )) ( ( ,
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Definition 1 [5, 6]. The mapping w : � ��	 of the geometric set � � { }H H H Hi n1 2

, , , , ...,� of objects into the

configuration space � � , which satisfies problem constraints, determines the spatial configuration of the geometric

objects H i , i n�1 2, , ,� .

Let us denote by �S
0

the configuration space of the domain (object) S
0

with the generalized variables

G u
0

0 0

� ( , )� , and let �
0

0 0( , ) be the origin of its fixed coordinate eigensystem and �
0

� ( , )L W . Let � �

0

0

� � S as

well, and let us construct the configuration space �� � � � �

0

0 1 2

� � � � �S H H H n� similar to the above.

Let us introduce the concept of spatial placement configuration. To form a system 
 of constraints, let us set

binary relations [5] on the object set from the domain �

0

as follows:

(à) the non-intersection of { }* , i.e., H G H Gi ii

i

j ii

j
( ) * ( ) if int ( ) int ( )H G H Gi ii

i

j ii

j
� � �, i j I n�  �

�

1

1

, ii c l r� , , ;

(b) the inclusion of { }� , i.e., H G S Gi ii

i
( ) ( )�

0 0

if int ( ) ( )H G S Gi ii

i
�

0 0

� �i n1 2, , ,� .

Definition 2. The mapping w : � ��

0 0

	 determines the placement configuration if H G H Gi ii

i

j ii

j
( ) * ( ) ,

H G S Gi ii

i
( ) ( )�

0 0

� �i j I n, , ii c l r� , , .

An example of the placement configuration of three-component objects is presented in Fig. 1.

PROBLEM OF MODELING HETEROGENOUS HUMAN

FLOW MOVEMENT AS A GEOMETRIC PROJECTION

Let us consider the problem of modeling human movement along the bodily boundary [7], which is on the

horizontal plane, and let us denote it by the domain S
0

. Let us partition this domain into subdomains (with the numbers

1 2, , ,� m, respectively) that are constrained by straight lines (called partitions), for which conditions A Si �Fr

0

,

i m� � �1 2 1, , , , (Fig. 2) are fulfilled. To determine the main movement direction, let us denote the mth domain by S m0

.

Here, the partitioner performs the translation for domains with direct movement in such a manner that the analyzed point

belongs to it. Let us determine the movement from the analyzed point for the domains in the form of a vector connecting

the given point with the point on the corresponding partitioner (taking into account the homothety coefficient). For each

current point with the coordinates g x y
i i i
( , ) (placement coordinates of the ith person), we determine the velocity vector

�

� i

i i
x y( , ). The vector depends on the local flow density that should not exceed the permissible values.
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Fig. 1. The placement configuration of three-component objects

taking into account continuous translations of the main (large)

ellipses under the condition of continuous spinning of the main

ellipse and the auxiliary ellipses that make up the complex object.



Without restricting the generality of ideas, we assume that every individual can be represented by a three-component

model by taking the conditions of combining model components into a single complex object (at the “adhesion” points)

into account, as well as constraining the rotation angle of the components around these points [2]. Let us denote the

horizontal projection of the human body by the combination of three ellipses, namely, the main one, Ec , and the two

auxiliary ones, El and Er (Fig. 3). The ellipses Ec and Er have the adhesion point gr , while ellipses Ec and El have the

adhesion point gl . The points gr and gl belong to the big semi-axis of the ellipse Ec , and they are placed symmetrically

to its small semi-axis. The placement of the points gr and gl on the plane is determined only by the placement

parameters of the ellipse Ec . The ellipses El and Er can only rotate at the angles within the given range ( , )� � �
1 2

(in

relation to the rotation angle of the ellipse Ec) in relation to these points.

Let us determine the main direction for each individual who found themselves in the movement area at eôñð kth

step (with the given time interval of, for example �tk �1sec). Then, individual characteristics (such as velocity,

direction, maneuverability, etc.) are slightly changed. The rotation angle of the complex object is the angle between the

perpendicular to the big semi-axis of the main ellipse and the main movement direction vector.

This article formulates the mathematical model of the subproblem on the kth iteration as finding the maximum of

the mutual movement of n people, which are in the domain S
0

, in a movement direction in the time �tk taking into

account the constraint on their non-intersection conditions, the conditions of people placement on a plot while adhering

to the given minimal feasible distances that were determined by technological restrictions (movement comfortability,

movement maneuverability constraints, etc.).

Let us show that the stated problem belongs to the geometric projection problem class [7] and is reduced to the

mapping of an output set of elements of arbitrary nature into an abstract set of the corresponding structure under

the given constraints [7]. This mapping is called configuration, and it is performed in the configuration space [5, 6]. Let

us introduce these concepts for the problem under study.
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Fig. 2. Image of the movement path.
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Fig. 3. A three-component model of human

body mapping onto the horizontal plane.



Note that the following additional constraints [2] were put onto object (1):

(i) conditions of adhesion of three ellipses in the form of a single complex object H i , namely,

x w x wc

i i

c

i

r

i i

r

i
 � �

1 2

cos cos� � ,

(2)

y w y wc

i i

c

i

r

i i

r

i
 � �

1 2

sin sin� � , (3)

x w x wc

i i

c

i

l

i i

l

i
 � �

1 2

cos cos� � , (4)

y w y wc

i i

c

i

l

i i

l

i
 � �

1 2

sin sin� � ; (5)

(ii) constraints on relationships between the rotation angles that arise from the physical restrictions on the mutual

placement of human body parts (for example, shoulders), namely,

� � � � �c

i i

l

i

c

i i
� � � 

1 2

, (6)

� � � � �c

i i

r

i

c

i i
� � � 

1 2

. (7)

Constraints (2)–(7) are obtained from the anthropological human data. Here, parameters �
l

i

l

i

l

i
x y( , ) and � r

i

r

i

r

i
x y( , )

are determined by the placement parameters of the ellipse Ec

i
(2)–(5), while the parameters of the spatial form of the objects

H E E Ei c

i

l

i

r

i
� � � , i n�1 2, , ,� , determine parameters � � � �

l

i

l

i

r

i

r

i
� �, , for which constraints (6) and (7) are fulfilled.

Let us analyze the features of mapping in the human movement modeling problem, namely, its generalized

parameters.

Note that additional technical restrictions are placed upon the constraints on non-intersection and object placement

in the human movement modeling problems. These are constraints on the relative step in time �t
i

of the movement of the

ith person, on the maneuverability zc

i
(i.e., the possibility of every human to deviate from the main movement direction),

on the permissible local flow density D
per

, and on movement comfortability (that is set either by different minimally

permissible distances rij , i j I n�  �
�

1

1

, between themselves and r i I ni n, , , ...,� �1 2 , i.e., between the people and the

area boundary or different spatial shapes by the change in the parameters �
l

i
and �r

i
in the case when complex object

(2)–(7) is created). Taking these minimally permissible distances into account is possible through the analytical

description of the conditions of non-intersection and of object placement, namely, the �-functions [3].

The human flow movement problem belongs to continuous problems. To model movement, time discretization

t t k tk� 
0

� , k �1 2, ,� , is introduced that allows us to reduce the solution to the initial problem to the solution to the

continuous problem sequence at each discrete time interval �tk where t
0

is the initial time moment.

Thus, the generalized variables of the problem of placing objects H
1

, H H Hi n2

, , , ,� � are variables

( , , , , , , , , , , , , ,x y x y x yc c c l r c

i

c

i

c

i

l

i

r

i

c

n1 1 1 1 1

� � � � � �� � c

n

c

n

l

n

r

n
, , , )� � � , and for the continuous problem of modeling

movements of individuals who correspond to objects H
1

, H H Hi n2

, , , ,� � , at the time interval �tk , the generalized

variable vector has the following form:

G t z x y t z x yc c c c l r

i

c

i

c

i

c

i
� ( , , , , , , , , , , , ,� �

1 1 1 1 1 1 1

� � � �� c

i

l

i

r

i
, , ,� � � , , , , , , , )� t z x y

n

c

n

c

n

c

n

c

n

l

n

r

n
� � � .

Then, the human movement modeling problem at each step �tk can be stated as follows.

We have to find the vector of parameters

G t z x y t z xc c c c l r

i

c

i

c

i� �

� (( , , , , , , ) , , ( , , ,� �

1 1 1 1 1 1 1

� � � � y t z x yc

i

c

i

l

i

r

i n

c

n

c

n

c

n

c

n

l

n

r

n
, , , ) , , ( , , , , , , )� � � � � �

� �

� � )

(8)

satisfying the following constraints:

— the conditions of non-intersection of objects H x yi c

i

c

i

c

i
( , , )� , H x yj c

j

c

j

c

j
( , , )� , i j I n�  �

�

1

1

:

�

H H

c

i

c

i

c

i

c

j

c

j

c

j

ij
i j

x y x y r( , , , , , )� � � � 0 ; (9)
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— the conditions of placing objects H x yi c

i

c

i

c

i
( , , )� in the domain S

0

:

�

H S

c

i

c

i

c

i

i n
i x y r i I n0

0 1 2( , , ) , , , ...,� � � � � ;

(10)

— technical requirements T x yi c

i

c

i

c

i
( , , )� � 0 :

T x y

t

z

D x

i c
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c

i

c

i

c

i

i

( , , ) :

,

,

(
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� �

� � � 0

0 1�

c

i

i x k

i

k c

i

i y k

i

kt t y t t D  �

�

�

�

�

�

�

�

� �
, ,
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per

(11)

to reach the maximum cumulative human movement during the kth time interval, i.e.,

G F G

G W Rk

n

�

� �

� arg max ( )

( )

7

,

(12)

F G

G W Rk

n

( ) max

( )

�

� �

	

7

,

F G t t G
i

i i

i

n

( ) ( )| |�

�

�
� �

�

�

1

, �

�

�

t
t

t

i k

i

k

� , where �t
k

i
and �t

i
are the real and relative movement time of the ith person

during the time interval �tk , respectively.

Conditional optimization problem (12) with constraints (2)–(7) and (9)–(11) is an NP-complex nonlinear

programming problem. The feasible solution domain Wk has a complex structure as it is a disconnected set where each

connectivity component is multiconnected and the boundary Wk consists of linear surfaces that have depressions [8]. The

constructed model describes a non-convex and continuous linear programming problem. The definition domain Wk

includes all the optimal solutions. Here, we can, at least theoretically, use the program for searching the global extremum

for non-linear programing problems and obtain the optimal solution to solve the above problem.

Since minimum and maximum operations [3] are used to construct the �-function, problem (12) with constraints

(2)–(7) and (9)–(11) belongs to the nonsmooth optimization [8]. According to its construction method, the feasible

solution domain Wk can be presented in the form of a subdomain set h (h is a certain number that depends on the number

and form of the object) as follows:

W Wk ks

s

h

�

�1

�

, (13)

where Wks is described by a system of inequalities with smooth functions in the left-hand side.

The representation of the feasible solution domain in the form of subdomain set (13) allows us to reduce the local

extremum of problem (12) with constraints (2)–(7) and (9)–(11) to solving the sequence of nonlinear programming

problems using the following algorithm.

Algorithm 1

Step 1. Let us label the starting point G t z x y t z x
s

c c c c l r

s i

c

i

c

i
� (( , , , , , , ) , , ( , , ,� �

1 1 1 1 1 1 1

� � � � yc

i

c

i

l

i

r

i s
, , , ) ,� � �

� , ( , , , , , , ) )�t z x y
n

c

n

c

n

c

n

c

n

l

n

r

n s
� � � , s �1, for problem (12) with constraints (2)–(7) and (9)–(11) (it belongs to Wks by its

structure).

Step 2. Using the coordinates of the starting point G
s
, let us generate a subdomain from the domain Wks (13) that

includes this point. If all the domains of Wks are already studied, the solution process ends.

Step 3. Starting from the point G
s
, let us find the local minimum of the function F G

s
( ) in the domain Wks. Let us

denote the obtained local extremum point by G
s1

.

Step 4. Let us consider that s s� 1, and let us transition to Step 2.

Practical research showed that to solve the problem under study, limiting ourselves to two or three Algorithm 1

iterations suffices.
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Problem decomposition means are proposed that allow us to significantly reduce resource consumption of the

optimization process and to use the proposed approach to model a wide spectrum of situations.

This article also developed an approximate problem-solving algorithm that is presented in the form of sequence of

the following steps.

Algorithm 2

Step 1. The domain is given in the form of a tree (graph) where edges are corridor segments and vertices are

intersections and segment adhesion points. A segment can have a variable width (that changes linearly). A distance to the

exit and predominant movement direction are calculated for each segment point.

Step 2. A grid with a small enough step is placed upon the evacuation domain to determine flow density.

Step 3. Complex objects are sorted in the ascending order of the distance to the exit.

Step 4. The local flow density and the predominant movement direction are determined by the sorting fact for

each object according to the placement coordinates of the center and the rotation angle of the main ellipse.

Step 5. A finite direction set is considered for the determined predominant movement direction within the limits of

the maneuverability angle where there is a direction, along which one can make the maximum movement in a span of

a second without violating segment boundaries and fulfilling the conditions of non-intersection with other ellipses.

(The movement velocity depends on the local flow density.)

The corresponding software was developed using the algorithms above. The “Evacuation” program that is designated

to research the human evacuation model and is based on the emulation of individual human movement [2] was developed.

The problem of modeling human movement out of four corridors with identical metric characteristics and with the same

number of people inside them (test example from [1]) is considered where the people form local flows that merge in the

main corridor leading to the exit. The article considers the influence people exude on one another by force, which reduces

movement time in an emergency. Figure 4 presents the configuration of human placemen within 30 sec and a configuration

fragment that demonstrates people exiting from one of the local corridors (the third corridor) into the main one.

The human movement modeling problem forms the configuration of their placement in the network of their

movement for each fixed movement time.

The labor expenditure of the developed algorithms is estimated. Here, Algorithm 1 is a non-linear algorithm [8]

searching for the local extremum of the problem, while Algorithm 2 is an approximate algorithm of the singularly

subsequent object movement with the linear labor expenditure [9].
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Fig. 4. Configuration of the human placement within 30 sec of their movement

where (a) is a configuration fragment of human placement when exciting the

third corridor into the main one (b).

a

b



Thus, when modeling the flow movement of humans whose number does not exceed 150, both algorithms are

efficient. Under a higher problem dimensionality, the singularly subsequent movement algorithm has to be used.

CONCLUSIONS

The problem of human flow movement belongs to the continuous problem class. When modeling movement, time

discreditation is introduced that allows us to reduce the solution to the initial problem to solving a continuous problem

sequence at each discrete time interval. Generalized changes for the continuous movement modeling problem are formed

at each kth discrete time interval. The representation of generalized changes using the object non-intersection conditions

and their placement on the horizontal plane, as well as technological restrictions in accordance with the quality criterion

at each fixed moment in time forms their placement configuration. The form of geometric objects that are a combination

of three ellipses is considered during active movement. The main ellipse rotates within the maneuverability angle, while

the other ellipses rotate in relation to the object adhesion points within the limits of anthropologically feasible angles.

The article proposes algorithms for modeling heterogenous human flows that are based on the methods of local

optimization of object movement taking into account different spatial forms and metric characteristics. The algorithms

are based on the analytical description of conditions of non-intersection of objects and their placement on horizontal

paths taking into account continuous translations and rotations of the objects.
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