
Enhancing Open-World Bacterial Raman Spectra Identification by
Feature Regularization for Improved Resilience against Unknown
Classes
Yaroslav Balytskyi,* Nataliia Kalashnyk, Inna Hubenko, Alina Balytska, and Kelly McNear

Cite This: Chem. Biomed. Imaging 2024, 2, 442−452 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The combination of deep learning techniques and
Raman spectroscopy shows great potential offering precise and
prompt identification of pathogenic bacteria in clinical settings.
However, the traditional closed-set classification approaches assume
that all test samples belong to one of the known pathogens, and their
applicability is limited since the clinical environment is inherently
unpredictable and dynamic, unknown, or emerging pathogens may
not be included in the available catalogs. We demonstrate that the
current state-of-the-art neural networks identifying pathogens
through Raman spectra are vulnerable to unknown inputs, resulting
in an uncontrollable false positive rate. To address this issue, first we
developed an ensemble of ResNet architectures combined with the
attention mechanism that achieves a 30-isolate accuracy of 87.8 ±
0.1%. Second, through the integration of feature regularization by
the Objectosphere loss function, our model both achieves high
accuracy in identifying known pathogens from the catalog and
effectively separates unknown samples drastically reducing the false
positive rate. Finally, the proposed feature regularization method during training significantly enhances the performance of out-of-
distribution detectors during the inference phase improving the reliability of the detection of unknown classes. Our algorithm for
Raman spectroscopy empowers the identification of previously unknown, uncataloged, and emerging pathogens ensuring
adaptability to future pathogens that may surface. Moreover, it can be extended to enhance open-set medical image classification,
bolstering its reliability in dynamic operational settings.
KEYWORDS: Raman spectroscopy, machine learning, ResNet, pathogen identification, Open-Set learning, Objectosphere

I. INTRODUCTION AND PROBLEM STATEMENT
Raman spectroscopy involves the scattering of light and its
interaction with the chemical bonds present in the material
under investigation. This interaction produces a unique
spectrum, akin to a fingerprint, that characterizes the material’s
chemical composition and molecular structure.1 It was
independently discovered in 1928 by Raman2 and Landsberg,3

and the appearance of laser spectrometers4,5 further expanded
its capabilities and applications. Raman spectroscopy is a
reliable, sensitive, nondestructive, and versatile analytical
technique to determine the chemical composition and
molecular structure of complex substances,6 where it is already
used in a number of applications,7 while its portability makes it
valuable for both laboratory and field applications.1 In
addition, its unique properties make it a promising tool for
biomedical science,8 including disease diagnosis.9−12

One of the crucial applications of Raman spectroscopy is the
identification of bacterial infections, which are responsible for

approximately 7 million deaths worldwide each year.13,14 While
there are effective methods for detecting pathogenic bacteria,
such as enzyme-linked immunosorbent assay (ELISA),
polymerase chain reaction (PCR), and sequencing-based
approaches, these methods often involve significant time
requirements to produce results.15−18 Even methods that use
clinical tools such as BioFire are limited by the testing panel,
such as the BCID2, which identifies 33 species.19 Furthermore,
clinical diagnostic procedures for identifying specific pathogens
often involve time-consuming microbiological culture (up to
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48 h) and antibiotic susceptibility testing (up to 24 h).20,21

During this waiting period, broad-spectrum antibiotics
(BSAbx) are commonly prescribed as a precautionary
measure.20,21 However, it is important to note that while
BSAbx can be life-saving, they should be used judiciously due
to their potential side effects and contribution to antibiotic
resistance. Excessive use of BSAbx can disrupt the healthy gut
microbiome, leading to the overgrowth of pathogens like
Candida albicans and Clostridium difficile.20,21 Disturbingly, the
Centers for Disease Control and Prevention (CDC) has
reported that over 30% of patients are treated with antibiotics
unnecessarily.22 The delay in accurately detecting pathogens
leads to extended hospital stays, escalated medical expenses,
heightened antibiotic resistance, and ultimately increased
mortality rates.23 To address this issue, Raman spectroscopy
offers immense potential as a highly sensitive, culture-free,
cost-effective, and rapid identification method. By employing
Raman spectroscopy, targeted antibiotics can be administered,
thus mitigating the development of antimicrobial resistance.24

This approach allows for timely and effective treatment
decisions, minimizing the negative impacts associated with
delayed pathogen identification.
The application of Raman spectroscopy extends beyond the

identification of pathogenic bacteria and encompasses diverse
areas such as the diagnosis of COVID-19,25 food safety,26

identification of contaminants in pharmaceuticals,27 and
homeland security.28−30 However, in this Article, our primary
focus is on the identification of pathogenic bacteria using the
bacteria-ID data set.24

To extract meaningful information from Raman spectra, data
analysis and processing are necessary. While manual
approaches, such as the “Ramanome” concept utilizing 31
specific Raman peaks, have been employed,31,32 they are not
sufficiently reliable. This is because spectral information
encompasses more complex characteristics beyond these 31
peaks, and interclass differences pose challenges for manual
classification.33,34 Moreover, due to the low probability of
Raman scattering, meaningful spectral information can be
easily obscured by background noise.35 Additionally, the large
volume of spectral data can be challenging to handle in
practical applications, necessitating reliable and efficient
quantitative methods facilitated by machine learning-driven
tools.36

We follow the definition of machine Learning (ML) by
Francois Chollet as “the effort to automate intellectual tasks
normally performed by humans”.37 The ML framework aims to
find a suitable representation of the data, allowing classification
rules to be automatically derived rather than hard-coded.
“Deep learning (DL) is a specific subfield of machine learning:
a new take on learning representations from data that puts an
emphasis on learning successive layers of increasingly mean-
ingful representations”.37 In our paper, the above-mentioned
layers of data representations are implemented using deep
neural networks (DNNs). According to ref 37, unlike DL,
shallow learning approaches use only one or two consecutive
data representation layers.
Shallow learning models, in particular, principal component

analysis (PCA) combined with linear discriminant analysis
(LDA), are often used to analyze the Raman spectra.38−42

However, these methods only work in a “closed-world”
environment, and our previous work, discussed later in the
text, has shown improvements. DL models have also been
successfully applied to classify molecular spectra43−48 and have

shown better performance compared to shallow ones.49 The
vanishing gradient problem50 prevents a further boost of the
model’s performance by a naive approach of adding extra
layers. ResNet architecture51 fixes this problem by introducing
skip connections. ResNet and its modifications have been
successfully applied to classify Raman spectra, outperforming
shallow models by a large margin, as shown by other
authors24,52,53 and in our previous work.54

While DNNs excel at identifying classes encountered during
the training phase, their behavior becomes unpredictable when
confronted with spectra belonging to unknown classes that
were not part of the training data, known as out-of-distribution
(OOD) samples.55,56 Typically, the SoftMax layer57 is used to
interpret DNN outputs as probabilities, and the classification
result corresponds to the output with the highest SoftMax
score. However, as outlined in ref 58, even a slight difference in
logit values between the winning and runner-up classes can
lead to vastly different probability values from the SoftMax
layer. Moreover, the SoftMax procedure involves logit value
normalization, rendering it inherently closed-world55 and thus
unable to reliably identify OOD samples. Consequently,
DNNs often produce incorrect and overly confident
predictions when faced with OOD samples. For example, as
shown in refs 59 and 60, DNNs encounter “foolish” and
“rubbish” images visually far from the class from the training
catalog but still produce high confidence scores. Another
example is the incorrect and confident classification of a crab
image as the clapping class, even though no crab-related items
were present during training.61 This necessitates the use of
specialized ML techniques capable of identifying OOD
samples, as the false positive (FP) rate estimated on large-
scale data sets exceeded 70% and, in some cases, was close to
100%.62,63

The biggest concern in terms of clinical use is that a classifier
trained on known species of bacteria would identify a new type
of bacteria as belonging to a known class with high
confidence.64 This issue is challenging to mitigate in practice,
as it is difficult to anticipate and account for all the potential
classes that a classifier might encounter in an unpredictable
environment. Some ML systems have been developed to
handle this problem, particularly in areas like medical image
classification,65 safety-critical applications,66 and environ-
mental monitoring.67 To tackle this challenge, in our research,
we introduce new features to our previous ML algorithm in ref
54 which are designed to accurately identify pathogenic
bacteria using Raman spectroscopy in real-world scenarios.
This improved algorithm can now handle noisy data while
maintaining relatively high accuracy. It not only successfully
classifies the pathogens already listed in its catalog but also
reliably distinguishes and rejects pathogens that are not
included in the catalog thereby enhancing patient care and
treatment outcomes.
Our Article is structured as follows. In Section II, we

describe the data set and its division into in-catalog and out-of-
catalog samples. In Section III, we present our custom ResNet
architecture that leverages the strength of the attention
mechanism to achieve enhanced performance compared to
existing DNN architectures in closed-world scenarios.
Furthermore, we highlight the limitations associated with
typical closed-world approaches. In Section IV, we combine
our backbone ResNet architecture with Entropic Open-Set and
Objectosphere loss functions, demonstrating drastic improve-
ment over the naive closed-world approaches in handling the
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unknowns. To minimize the occurrence of inconclusive
outcomes for in-catalog samples, we augment our combined
deep neural network with the one-vs-rest classifier in Section
V. In Section VI, we demonstrate a substantial enhancement in
the performance of novelty detectors following the implemen-
tation of our proposed feature regularization, as opposed to
using naive approaches. Therefore, we demonstrate that our
integrated DNN architecture outperforms currently available
techniques for both closed- and open-world applications. We
present our conclusions in Section VII. Our previous proof-of-
concept work was published in ref 54.

II. OVERVIEW OF OPEN-SET LEARNING STRATEGY
AND SPLITTING THE DATA INTO / /
CATEGORIES

In general, current Open-Set learning approaches belong to
two broad classes: generative and discriminative.55 Generative
methods model the joint distribution of input features and
labels to estimate the probability that a given sample is OOD,
while discriminative methods directly learn the decision
boundary between classes to classify the input data based on
their features. However, generative methods have been shown
to be less efficient than discriminative methods with a well-
chosen background class for any but simple data sets,68,69 so
we will focus on discriminative methods in our further
considerations.
In this discriminative modeling, we classify the data into

three categories: , , and , similarly to our previous
work.54 corresponds to the known category, the classes of
interest that the DNN prioritizes to identify. consists of
classes belonging to the background category that the DNN
“ignores” in order to identify with greater confidence in a
procedure called feature regularization. Finally, corresponds
to samples corresponding to classes not seen during the
training phase of the DNN and which the DNN seeks to
distinguish from the classes. Only and are used during
the training of the DNN, and the DNN is completely unaware
of until the testing stage.
For our purposes, we use the bacteria-ID data set,24 which

contains 30 pathogen classes shown in Table 1, with 2000
spectra per class for training, 100 spectra per class for fine-
tuning, and 100 spectra per class for testing. To test our ML
algorithm in open-world learning settings, we split our data set
into four parts, p1, p2, p3, and p4. We assign the pathogen group
p1 to or “known classes of interest” since those are
extremely common and contagious. Antibiotic-resistant or
susceptible pathogens corresponding to the p4 group are
particularly harmful to patients and a burden on healthcare
systems. Misclassification of these pathogens is extremely
problematic, especially if any errors are made in the
classification between a susceptible strain of the pathogen
and a resistant strain (such as MSSA vs MRSA). Therefore, we

classified the p4 pathogens group as , to highlight the ability
of our algorithm to identify “never before seen” samples while
keeping high accuracy on the known ones. The p2 and p3
groups are often antibiotics susceptible but typically found in
the body. In our experiments, we tested both options, assigning
them as both and in different runs of the experiments for
this proof of concept work.
However, as mentioned before, it is necessary to carefully

assign the pathogen classes to the background category in
order for the DNN to be efficient. Note that p1 and p2 are
closer in their characteristics than p1 and p3. Both groups p1
and p2 consist mainly of streptococcal species and have
streptococcal species associated with respiratory and invasive
infections. Although groups p1 and p3 also share some common
features, such as the presence of Staphylococcus species, in
general, p1 and p2 are much closer to each other in their
characteristics. Due to the low signal-to-noise ratio of this data
set, it is necessary to keep and suf f iciently distinct from
each other to avoid false positives or misclassifications.
As we will later demonstrate, if this condition is not met, the

DNN is forced to focus on highly similar samples and “ignore”
them simultaneously, which is an inconsistent task and leads to
significant performance degradation. The case when = p1
and = p2 has significantly worse performance compared to
all other data partitions, which highlights the importance of
choosing correctly. It is much more efficient to assign

= p1 and = p3 or = +p p1 2 and = p3 as we show
further in the text.

III. BACKBONE NEURAL NETWORK ARCHITECTURE
AND LIMITATIONS OF CLOSED-WORLD
APPROACHES

We construct our DNN architecture based on custom ResNet
architecture, similar to our previous work.54 However, we
implement several adjustments to mitigate spectral noise and
effectively address the inherent low signal-to-noise ratio
present in the bacteria-ID data set. Through experiments, we
found that employing the mainstream SE-ResNet architec-
ture,70 which incorporates the ResNet architecture alongside
the squeeze-and-excitation (SE) attention mechanism in all
residual connection layers, did not result in improved accuracy
compared to a standard ResNet architecture for this data set.
Instead, it resulted in overfitting, prompting us to only
augment the last residual block of our custom ResNet
architecture with the SE attention mechanism. Surprisingly,
this adjustment led to significantly improved performance
compared to both SE-ResNet and standard ResNet architec-
tures. Both during training and fine-tuning, we utilized the
Adam optimizer provided by TensorFlow,71 with a batch size
of 32 and a validation set comprising 20% of the total data set.
However, for training, we set the learning rate to 10−5, whereas
for fine-tuning, we employed a smaller learning rate of 10−6. In

Table 1. List of Pathogen Names and Their Division into Categories , , and

class pathogen name

p1, used as Group A Strep, Group B Strep, Group C Strep, Group G Strep, Escherichia coli 1, E. coli 2, Enterobacter cloacae, Proteus mirabilis, Serratia
marcescens, Candida albicans

p2, used as
/

Enterococcus faecalis 1, E. faecalis 2, Enterococcus faecium, Pseudomonas aeruginosa 1, P. aeruginosa 2

p3, used as Staphylococcus epidermidis, Staphylococcus lugdunensis, Streptococcus sanguinis, Klebsiella aerogenes, Candida glabrata
p4, used as MRSA 1, MRSA 2, MSSA 1, MSSA 2, MSSA 3, Streptococcus pneumoniae 1, S. pneumoniae 2, Klebsiella pneumoniae 1, K. pneumoniae 2, Salmonella

enterica
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addition, during the fine-tuning stage, we only fine-tuned the
last three layers of our custom DNN to mitigate the risk of
overfitting. Importantly, a similar architecture utilizing only
one small SE-ResNet module was demonstrated to be highly
efficient for breast cancer histopathological image classifica-
tion.72 Overall, our experiments revealed that integrating a
single attention block enhances the performance of ResNet.
However, excessive attention within the DNN can result in
overfitting and negatively affect performance. A schematic
representation of our DNN is shown in Figure 1. Finally,
similarly to our previous work, we assembled our ResNets into
an ensemble:

= [ ]
=

iPrediction Ensemble
1
5

Prediction
i 1

5

(1)

To demonstrate the stability of our model’s performance,
first we conducted 20 runs of our model and assessed the
accuracy of a single run using all 30 pathogen classes,

= + + +p p p p1 2 3 4, = . We subsequently grouped
these 20 models into 4 ensembles, each consisting of 5 models.
As illustrated in Table 2, the average 30-isolate accuracy of an
individual model run stands at 87.5% ± 0.4%, whereas the
accuracy of the ensemble is 87.8% ± 0.1%. Thus, using a
model ensemble results in a marked increase in accuracy and a
reduction in variance. The corresponding correlation table is
shown in Figure 2. The architecture we propose surpasses the

Figure 1. Schematic representation of our custom ResNet architecture. The DNN processes input pathogen Raman spectra into classification
probabilities while simultaneously detecting OOD samples. Section IV describes feature regularization using the class, while an additional OOD
detector is implemented in Section VI. For a pathogen to be classified as belonging to the known catalog, it must exceed a threshold and pass the
novelty detector test.

Table 2. Single Runs and Ensemble Accuracies on All 30
Classes, = + + +p p p p1 2 3 4, =

run no. accuracy of a run ensemble accuracy

1−5 87.6%, 87.2%, 88.2%, 87.7%, 87.4% 87.8%
6−10 88.3%, 87.9%, 87.4%, 87.8%, 87.7% 87.9%
11−15 87.7%, 87.5%, 86.9%, 87.3%, 87.1% 87.9%
16−20 86.7%, 87.5%, 87.2%, 87.4%, 87.1% 87.6%
accuracy 87.5 ± 0.4% 87.8 ± 0.1%
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current state-of-the-art closed-world DNNs in terms of 30-
isolate accuracy on the bacteria-ID data set. Existing models
achieve accuracies of 82.2 ± 0.3%,24 84.7 ± 0.3%,53 86.3%,73
and 86.7 ± 0.4%,52 respectively. Meanwhile, our model
achieves an 8-treatment accuracy of 97.7% ± 0.2%, which is
comparable to the available models.24,52,53,73 However, in
scenarios where more targeted antibiotics are used, our
proposed DNN architecture may outperform its counterparts
due to its higher 30-isolate accuracy. Therefore, we not only
utilize our model in the closed-world setting but also adapt it
for the open-world settings considered in the following
Sections, leveraging its remarkable performance.
Before we get into the open-world settings, we need to

establish the required definitions. The input of the DNN x
corresponds to the intensity values of the input Raman
scattering spectra, and the corresponding output represents the
probability of the spectrum belonging to a specific class of
pathogens p, given by the logit values lp(x). The logit values are
obtained by multiplying the output from the second to last
layer of the DNN, called the deep features F(x), by the weights
W, and the probability of a spectrum belonging to a particular
class of pathogens p is obtained from “softmaxing” procedure,
defined as

= · =l x W F x S x( ) ( ), ( )
e

e
p p

l x

p
l x

( )

( )

p

p
(2)

The resulting value is in the interval Sp(x) ∈ [0, 1] with
∑pSp(x) = 1, and thus Sp(x) can be interpreted as a probability
measure.
In the case where the input belongs to the category , it is

classified as the pathogen that has the highest softmax score in
eq 2. In the perfect case scenario, the DNN’s output from the
sample belonging to ith class in the pathogen catalog should
return the following:

ß
Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

[ ] [ ]

=| |

i(Pathogen class ) 0, ..., 1 , ..., 0
ith position

Length (3)

where | | represents the number of pathogen classes in the
catalog.
When unknowns are present in the test set, it may be

tempting to allocate a dedicated output node for the
“unknown” category. However, as demonstrated by previous
research in ref 74, this approach proves ineffective except for
simple academic data sets. Similarly, our prior investigation in
ref 54 revealed that such an approach is ill-suited for Raman
spectroscopy applications in open-world scenarios. In essence,
since there may be multiple spectra associated with the
unknown category, assigning a single node to all of them is
inefficient.
A more efficient strategy for managing the category

involves thresholding the softmax score.58,75,76 This technique
operates under the assumption that there is ample distinction
between the categories and within the feature space,
resulting in the DNN’s output on approaching the
following:

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ| | | |
=| |

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

1
, ...,

1

Length (4)

with Shannon entropy77 reaching its maximum value | |log ( )2 .
Therefore, there is no dedicated node for the unknown
category further in the text, since it is assumed that is
distributed among the nodes that correspond to the
category.
In the case in which the condition in eq 4 is fulfilled, it is

possible to introduce the threshold Λ such that and are
separated as <max( ) while >max( ) . In practice, if
the maximum value of the softmax score is less than Λ, this is
classified as an inconclusive “I don’t know what it is” result,
which may mean that the sample belongs to category
outside the catalog. Another possibility is that the sample
belongs to but with low confidence. Thus, our goal is to
separate samples outside the catalog while minimizing the
number of inconclusive results for samples in the catalog.

Figure 2. Correlation table for all 30 pathogens in “closed-world”
settings when all pathogen classes are known, = + + +p p p p1 2 3 4
; =, . Average accuracy = 87.8 ± 0.1%.

Figure 3. False positive rate on , error, and inconclusive rates on as a function of correct classification rate for naive approaches.
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Since the correct classification, error, and inconclusive rates
on as well as the FP rate on are all functions of the global
threshold Λ, it is convenient to represent the FP, error, and
inconclusive rates as a function of the correct classification rate,
and we plot the results corresponding to the naive threshold
approaches in Figure 3. A striking feature can be observed: the
FP rate for unknowns is much higher than the error probability
for knowns and can be close to 100%, so special methods are
needed to solve this problem, which will be implemented in
the following Sections. In practice, as Figure 3 demonstrates,
and are not sufficiently separated, resulting in a high FP

rate, and therefore the assumption in eq 4 is false. In the next
Section, we show that by introducing an additional “ignored”
category and Open-Set methods, this problem can be
mitigated, as illustrated in Figure 4. The solid lines

corresponding to the FP rates of the naive approaches are
much higher than the dotted and dashed lines corresponding
to the Open-Set methods labeled “EOS” and “Obj.” and
discussed further.

IV. FEATURE REGULARIZATION BY ENTROPIC
OPEN-SET AND OBJECTOSPHERE METHODS

In order to improve separation between and , we
introduce the “ignored” category, . This approach was
originally proposed in ref 74 and has been shown to be highly
efficient for open-world Raman spectroscopy purposes.54

This method consists of modifying the loss function during
the training and consists of two parts. First, the Entropic Open-
Set (EOS) loss function74 is defined as

=
| | =

| |

l
m
ooooooo

n
ooooooo

V x

S x x

S x x
( )

log( ( )), if

1
log( ( )), if

p

p
p

E

1 (5)

Thus, for category , it reduces to the usual categorical cross-
entropy loss function, while for the case where x , VE(x)
aims to maximize the Shannon entropy and uniformly
distribute the output of the DNN over the knowns.
Second, in general, classes belonging to tend to have

higher absolute values of deep features F x( ) than classes
belonging to . Thus, the Objectosphere loss function aims to
increase this separation by using the deep feature F(x)
parameter as
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where the values of α and β are adjusted to minimize the
inconclusive rate on the category by the model cross-
validation, and ||·|| is a regular Euclidean norm. This leads to a
minimization of the FP rate on , and this property generalizes
to the category, even though DNN is unaware of until
the testing phase.
The corresponding FP rates on , error, and inconclusive

rates on as a function of correct classification rate for the
Entropic-Open Set (EOS) and Objectosphere (Obj.)
approaches with different choices of and are shown in
Figure 6. As mentioned earlier in Section II, it is crucial to
choose the right data set for the category. One can increase
the global threshold Λ and reduce the FP frequency as well as
the error rate to zero at the cost of increasing the frequency of
inconclusive results on . The FP rates of all Open-Set
learning experiments are plotted in Figure 5, and one can
observe a noticeably higher FP rate when includes p2,
showed by solid lines and marked by the √ sign.

Although the Open-Set learning methods described above
significantly improve the DNN’s performance in the open
world as shown in Figure 4, there are a significant number of
inconclusive results on . For example, as shown in Figure 6,
if the threshold is increased so that both the FP and the error
rates are zero, the highest rate of conclusive result achieved is
around 18%. Therefore, in the next Section, we combine the
Open-Set approaches implemented here with a one-versus-the-
rest classifier to increase the number of conclusive results on
while keeping the FP and error rate zero.

V. COMBINATION WITH THE ONE-VS-REST
CLASSIFIER

To reduce the number of inconclusive results, instead of the
global (Λ), we introduce the per-class threshold Λ′ to classify
the DNN’s output S(x):

ßÖ́ÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖ
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= [ ] = [ ]| |
=| |

| |

=| |

S x s s( ) , ..., , , ..., , ...,i
i

1
Length

1
th position

Length

If the maximum value of the output exceeds the threshold
value for the class, = >s smax( )

k
k i i, the spectrum is classified

Figure 4. Comparison of false positive rates by naive vs Open-Set
methods.

Figure 5. Comparison of FP rates of all Entropic Open-Set (EOS)
and Objectosphere (Obj.) experiments. A noticeably higher FP rate
when the data set includes p2 can be observed, shown by the √
mark.
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as belonging to [ ]i(Pathogen class ) . Otherwise, in the
case <s i,i i , the result is inconclusive.
Since different classes have different rates of confidence

represented by the softmax score, the class-adaptive threshold
leads to a higher average rate of conclusive outcomes.
Increasing the per-class threshold reduces both the FP and
error rates while increasing the number of inconclusive
outcomes, and we compute =FP/Err. 0% providing both FP
= 0% and error rate = 0%. A similar approach was successfully
used for open-world text classification as a part of the DOC
model.78

The corresponding results are provided in Table 3, and one
can observe that when the category is chosen appropriately,
the Entropic Open-Set and Objectosphere approaches

consistently outperform the naive thresholding. For example,
naive thresholding with = + +p p p1 2 3 and = have

= ±+
= 38.1 2.1%p p

FP/Err. 0%
1 2

, na ive thresho ld ing wi th

= +p p1 2 and = have = ±+
= 45.1 0.4%p p

FP/Err. 0%
1 2

,
while EOS and Obj. with = +p p1 2 and = p3 have 55.5 ±
1.4% and 55.4 ± 1.8%, respectively. However, as mentioned
before, when p2 is included in the data set, this leads to
degradation of performance, as marked by the√ sign in Table
3.
A comparison of the conclusive results for different classes of

pathogens is presented in Figures 7 and 8. One can observe

that while Entropic Open-Set and Objectosphere approaches
have a higher rate of conclusive results on average over the
classes of interest, there are pathogen classes on which naive
thresholding has a higher rate of conclusive results. This
observation can be attributed to both the inherent properties
of the pathogens under study and potential artifacts associated
with the DNN. For example, Serratia marcescens is a Gram-
negative bacterium associated with nosocomial infections
exhibiting unique biochemical characteristics resulting in
distinct spectral signatures compared to other bacterial

Figure 6. FP rate on , error, and inconclusive rates on as a function of correct classification rate for Entropic Open-Set (EOS) and
Objectosphere (Obj.) approaches.

Table 3. Comparison of the Average Rate of Conclusive
Results over the Category by Naive and Open-Set
Methods

⟨λ⟩p d1

FP/Err.=0% ⟨λ⟩p d1+pd2

FP/Err.=0% ⟨λ⟩pd1+pd2+pd3

FP/Err.=0%

naive: = p1, = 40.3 ± 1.0% N/A N/A

naive: = +p p1 2,
=

46.7 ± 0.8% 45.1 ± 0.4% N/A

EOS: = p1, = p2 √ 42.3 ± 1.0% N/A N/A

naive: = +p p1 3,
=

30.9 ± 1.2% N/A N/A

EOS: = p1, = p3
46.7 ± 1.4% N/A N/A

Obj.: = p1, = p3
51.8 ± 1.8% N/A N/A

naive: = + +p p p1 2 3,
=

37.0 ± 2.6% 38.1 ± 2.1% 44.6 ± 1.4%

EOS: = p1,

= +p p2 3

48.1 ± 1.2% N/A N/A

EOS: = +p p1 2,
= p3

52.1 ± 1.0% 55.5 ± 1.4% N/A

Obj.: = +p p1 2,
= p3

51.4 ± 1.5% 55.4 ± 1.8% N/A

Figure 7. Comparison of conclusive outcomes over classes = p1 for
naive and Open-Set methods. Error bars represent one standard
deviation over four ensembles.
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pathogens which may have contributed to its distinguishability
from the OOD samples. Additionally, although efforts were
made to select the category to be distinct from , there may
be relevant spectral features present that are suppressed during
feature regularization. Therefore, in future studies, we plan to
design the category explicitly rather than selecting it from
the available set of pathogens.

VI. SUPPLEMENT OF OOD DETECTORS AND THEIR
EVALUATION

Finally, we implement and test OOD detectors that aim to
separate samples from af ter training, namely,
Mahalanobis,79 OpenMax,80 and ODIN81 detectors.
As shown in Figure 9 and Figure 10, the ODIN detector

based on input perturbations and temperature scaling performs
much better than the other two OOD detectors and separates
and with a significant margin while the other two

detectors have a significant / overlap, similarly to the
findings of ref 62.
At the same time, as shown in Figure 11, the feature

regularization by the Objectosphere loss function during the
training boosts the ODIN performance even more and leads to
a significantly larger margin separating and scores. For
the Objectosphere with = p1 and = p3, the maximum
value of the ODIN score for known classes is

= ×max(ODIN( )) 4.7 10 6, and the minimum value of
the ODIN score for never seen before classes is

= ×max(ODIN( )) 3.5 10 2 while for naive thresholding
w i th = +p p1 3 t he co r r e spond ing va lue s a r e

= ×max(ODIN( )) 3.4 10 8 a n d
= ×max(ODIN( )) 1.6 10 2. For the case of Objectosphere

with = +p p1 2 and = p3, the / margin is even larger;
the maximum value of the ODIN score for known classes is

= ×max(ODIN( )) 4.5 10 6, and the minimum value of the
ODIN score for never seen be fore c la s ses i s

= ×max(ODIN( )) 6.7 10 2, in comparison with naive
thresholding for = + +p p p1 2 3 with the corresponding

v a l u e s b e i n g = ×max(ODIN( )) 5.4 10 8 a n d
= ×max(ODIN( )) 1.8 10 2. Additionally, as one can

observe from Figure 11, the histogram corresponding to
Objectosphere is noticeably shifted toward larger values of the
ODIN scores. Similarly, even though the OpenMax detector
performs worse than ODIN, the histograms corresponding to
Objectosphere are shifted toward larger values as well.
If during the training stage, in addition to focusing on the

knowns, the DNN has its features regularized by means of the
Objectosphere loss function in eq 6, it leads to a significantly
improved separation between knowns and unknowns in
comparison with the application of the OOD detector with
the naive approaches alone leading to improved reliability of
inference.

VII. CONCLUSIONS AND FUTURE WORK
Machine learning-enabled Raman spectroscopy holds signifi-
cant promise as a label-free, accurate, and rapid method for
identifying pathogens and hazardous contaminants, contribu-
ting to the preservation of human lives. However, the reliability
and robustness of ML models used in such applications pose
limitations, particularly in critical scenarios where complete
knowledge of all possible classes cannot be assumed and when
there are substantial disparities between test and training data.
To address this gap, we developed a unified approach that
addresses the problem of reliable and robust classification of
open-world Raman spectra by leveraging the capabilities of
ResNet combined with the SE attention mechanism and
Objectosphere loss function. We evaluated the proposed
method on the bacteria-ID database and demonstrated that it
not only provides better or comparable performance to state-
of-the-art methods under closed-world conditions but also
provides robust identification of out-of-catalog samples.
Combination with the one-vs-rest classifier significantly
improves the number of inconclusive outcomes while keeping
the FP and error rate zero. Additionally, we showed that the
conjunction of OOD detectors with our architecture boosts
their performance and found that the ODIN detector performs
significantly better than the Mahalanobis and OpenMax
detectors, making it a valuable supplement for OOD detection.

Figure 8. Comparison of conclusive outcomes over classes
= +p p1 2 for naive and Open-Set methods. Error bars represent

one standard deviation over four ensembles.

Figure 9. Comparison of OOD detectors after the model training with Objectosphere loss function with = p1 and = p3. A significantly better
/ separation can be observed for the ODIN compared to the OpenMax and Mahalanobis.
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In the future, we aim to adapt our ML algorithm to cater to
other critical applications such as public safety and environ-
mental monitoring, benefiting from the adaptability of our
proposed model to analyze Raman spectra in diverse contexts.
Furthermore, given the versatility and adaptability of our
approach, our future goal is to adapt it for medical image
classification in open-world scenarios.
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