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Abstract:  - This paper aims to create efficient techniques to optimize the weight of wind turbine blades. A new 
mathematical model has been introduced, applying boundary element methods. Hypersingular integral 
equations have been used to calculate the dynamic pressure acting on the blade. The finite Hadamard part of the 
hypersingular integral has been received analytically over an arbitrary flat polygon. A revised version of the 
nonlinear programming method has been developed, which incorporates adaptive management techniques to 
optimize the procedures. The proposed optimization method uses several methods, called hybrids. A criterion 
has been specified by which the most effective hybrids are selected for the current search for an extremum. 
This criterion includes information characterizing a changing situation. The computer simulation results 
indicate that the wind turbine blade with the minimal weight has been achieved. Additionally, the proposed 
method will be extended to include the strength and dynamic analysis of wind turbines with a vertical axis of 
rotation. 
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1   Introduction 
Modern wind power plants are complex systems 
composed of numerous interconnected components 
with various functions. Among these, the windmill's 
vane system plays a central role. To optimally 
design structures of this type, search methods have 
been employed to identify the best set of parameters 
that meet the specified constraints and yield the 
most favorable outcome according to a chosen 
optimization criterion. While such methods are 
well-established, their effectiveness could vary 
depending on the changing conditions during the 
optimization process, and it is not always possible to 
achieve success within a reasonable time frame 
using any single method, [1]. The research 
presented introduces a novel hybrid optimization 
approach, which has been successfully applied to 
solve multi-parameter nonlinear programming 

problems while considering both system constraints 
and functional limitations, [2]. 

Numerous numerical methods have been 
developed to assess the dynamic and strength 
characteristics of small wind turbines, [3], [4]. For 
the optimal design of both large and small turbines, 
two main types of computational techniques are 
typically employed: dynamic and strength analysis, 
along with nonlinear programming. For stress-strain 
analysis, methods such as finite element [5] and 
boundary element [6] methods, finite volume 
methods [7], and computational dynamics 
techniques [8], [9] have proven effective. 
Additionally, some advanced numerical methods, 
based on the immersion approach and focused on 
the strength and stability of aerospace structures, are 
also worth noting [10], alongside experimental 
studies [11].  

The contemporary aspects of nonlinear 
programming have been discussed in [12]. An 
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effective numerical method for optimal design 
specifically applied to cyclically symmetrical 
structures, has been further developed in [13]. It is 
important to note that the numerical implementation 
of finite element and volume element methods, 
including turbulence models, demands significant 
computational time. This could create challenges 
when applying optimization procedures that require 
numerous evaluations of the objective function and 
constraints. As a result, boundary element methods 
[14] and other mesh-reduced approaches [15] are 
gaining prominence for optimal structural design. 

In this paper, two effective numerical 
techniques have been applied. The first is a 
hypersingular integral method, implemented with 
boundary elements [16], to determine the dynamic 
characteristics of the blade. The second method has 
been based on nonlinear programming, [2]. By 
combining these approaches, new and efficient 
techniques for the optimal design of wind turbine 
blades have been developed, [17]. 

 
 

2   Problem Formulation 
To compute the stress-strain state, the blade has 
been modeled as a thin-walled, naturally twisted rod 
with a variable cross-section and length LLL, fixed 
to the wind turbine hub, [18]. A coordinate system 
has been chosen where ZG represents the axis of 
rotation, and XG aligns with the axis of the wind 
wheel, as shown in Figure 1. The YG direction has 
been selected such that the global coordinate system 
is right-handed. For the stress-strain analysis of the 
blade, a local coordinate system (x,y,z) has been 
defined, with axes parallel to XG, YG, and ZG, 
respectively. The origin of this system has been 
placed at the center of gravity of the section.  

 
(a) 

 
(b) 

Fig. 1: Blade model a) and its section b) 
 

The blade geometry has been described by a 
series of cross-sectional profiles. For each section, 
the following parameters have been specified: the 
coordinates (x,y) of the outer contour and the section 
thickness h(z). 

It has been assumed that the blade experiences 
aerodynamic loads and centrifugal forces. The 
calculated aerodynamic load has been reduced to 
distributed lateral forces qx, qy and distributed 
torque mz. For illustration, a blade with the 
following characteristics has been considered. The 
blade length, including the extension, is 
L = 19.13 m. The elastic constants are as follows: 
the modulus of elasticity of the extension 
E0=2105 MPa, and the modulus of elasticity of the 
blade E varies from 4.92104 up to 2.5104 MPa; 
Poisson's ratio is  = 0.18, material density is 
=1.6103 kg/m3. The wind turbine rotation speed is 
 = 55 rpm and the wind speed is 10 m/s. The 
number of blade sections is assumed to be 65. The 
thickness of the sections varies from 5 mm at the 
root to 2 mm at the tip, with the thickness of the 
extension section fixed at 8 mm. Displacements and 
stress distributions in the blade under aerodynamic 
and centrifugal loads have been estimated, [18]. 

The air environment has been assumed to be 
ideal, incompressible, and free of vortices. The 
problem of flow distribution around the blade could 
be reduced to solve a hypersingular integral 
equation, which allows for determining the pressure 
variation along the blade. The aeroelasticity 
problem has been addressed in an uncoupled 
formulation, meaning that the deformations and 
displacements of the blade are not assumed to affect 
the aerodynamic forces acting on it. 

For the optimal design of such structures, 
procedures have been required to minimize (or 
maximize) an objective function by appropriately 
selecting design parameters within specified 
constraints. These constraints are also functions of 
the initial parameters. 

The formulation of the optimization problem for 
the wind turbine blade has been described. The 
purpose is to find the blade with the minimum 
weight while satisfying the following conditions: 
under steady aerodynamic loads and centrifugal 
forces, the normal displacement w should not 
exceed a given value [w], the stresses must be 
limited to [σ], and the first natural frequency of 
vibration ω must also remain below a specified 
threshold. 

 
Thus, for i=1,…N there are: 

|max 𝑤𝑖| ≤ [𝑤], |max σi| ≤ [σ], [𝜔1] ≤ (1) 
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𝜔 ≤ [𝜔2]. 
The objective function here is the blade mass 

m = V, where  is the material density, V is the 
blade volume defined as: 

𝑉 = ∑  ∫ 𝑆(𝑧)𝑑𝑧,
𝑧𝑖+1

𝑧𝑖

𝑁−1

𝑖=1

 
 

(2) 

where S(z) is the cross-sectional area, (N –1) is 
section number. 

 
The variable parameters in this case are the 

thicknesses of the blade at different sections hi(z), 
i = 1,…, N. 

Thus, the extremal problem outlined in (1)-(2) is 
a nonlinear programming problem [2], [15], where 
the goal is to determine the vector 

𝑋∗ = arg   extr
𝑋∈𝐺

𝐹(𝑋), 
𝐹(𝑋) =V 

 
(3) 

in the domain 
𝐺 = {𝑋: 𝐺𝑖(𝑋) ≥ 0, 𝑖 = 1, 𝑚} ≠ ∅}        (4) 
of the finite-dimensional parametric space En, 

which provides the extremum of the given objective 
function F(X), defined within a certain extension 
HG. 
 
 
3  Problem Solution 
 

3.1 Hypersingular Integral Equation 

 Technique 
To calculate aerodynamic loads, the blade has been 
represented by a finite-dimensional bearing surface, 
S1. Using the theory of bearing surfaces, various 
problems have been addressed and solved regarding 
the lift force on turbine blades [2], helicopter rotors 
[19], ship propellers [20], rotary-blade hydraulic 
turbine impellers [21], and wind wheel blades [4]. 
On this surface, a vortex layer originates from the 
trailing edge, taking the form of a vortex sheet, S2, 
that propagates in the direction of the incoming flow 
velocity, V0. In this context, the pressure drop ΔP 
across the blades has been determined using the 
Cauchy-Lagrange integral, which in this specific 
case is expressed as 

Δ𝑃

ρ0
= −(grad ⋅  𝐕𝑅), 

(5) 

where 0 is the liquid density,  is the velocity 
circulation, 𝐕𝑅 is the relative fluid velocity, 
VR= V0 –   r, and r is the point radius-vector 
under consideration. 

Consider the problem of an ideal incompressible 
fluid flowing around a thin load-bearing surface. 
Since the flow has been assumed to be irrotational 

in all regions outside the bearing surface S1 and the 
vortex wake S2 behind it, there exists a potential 
function for the absolute fluid velocity. This 
potential satisfies the Laplace equation in the 
regions outside the discontinuity surfaces S1 and S2.  

∇2Φ = 0. (6) 
 
Require that the non-flow condition be satisfied 

on the bearing surface S1,  
∂Φ+

∂𝐧
=

∂Φ−

∂𝐧
=   (𝐕0, 𝐧), 

(7) 

as well the absence of pressure’s drop along the 
vortex wake S2  

(grad(Φ+ − Φ−) ⋅ 𝑽𝑅) = 0. (8) 
 
Furthermore, it is necessary to satisfy the 

condition of attenuation of perturbed velocities at 
infinity:  

grad Φ⌉∞ = 0.  
 
The most suitable representation for solving the 

above-described problem of the Laplace equation is 
through the use of a double-layer potential, [22] 

Φ(𝐱) =
1

4π
∬ (𝛏)

∂

∂𝐧

1

|𝐱−𝛏|S
𝑑𝑆. (9) 

 
Aerodynamic loads have been calculated by 

solving hypersingular integral equations using the 
boundary element method, as detailed in [23], [24]. 
The problem will be reduced to solve the following 
hypersingular equation. 

1

4𝜋
∬ (𝛏)

𝜕2

∂𝐧x ∂𝐧
(

1

|𝐱−𝛏|
) 𝑑𝑆𝑆

= 𝑔(𝐱),

𝑔(𝐱) = (𝐕0 ⋅ 𝐧(𝐱)). 

(10) 

 
The vectors 𝐧𝐱, 𝐧  in equations (9) and (10) 

represent unit normals to the surface S at the points 
x and , respectively. It is important to note that the 
integral in equation (10) is defined in the Hadamard 
sense, [24]. While this approach introduces 
significant computational challenges, the 
formulation in equation (10) satisfies the Laplace 
equation, the Sommerfeld condition, and ensures the 
continuity of the normal derivative (7) when 
crossing the surface S. Therefore, it is effective for 
analysing fluid-structure interaction problems where 
a liquid is in bilateral contact with the structure, in 
simulating the strength and dynamic properties of 
elements such as wind turbine blades, components 
of launch vehicles, and for various applications 
within hydroelasticity theory. 

The finite part of the integral in (10) according 
to Hadamard at x∈S is the following limit, [25]: 

I(x)=lim
0

[
1

4𝜋
∬ (𝛏)

𝜕2

∂𝐧𝐱 ∂𝐧y

1

|𝐱−𝛏|
𝑑𝑆𝑆∗ −

(11) 
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−
(𝐱)


],  

where S*=S\S0, and S0 is a circle of radius , and 
with x as center. 

 
Calculate analytically the normal derivative of 

the double layer harmonic potential (10) in the sense 
of the Hadamard finite part, supposing that S is a 
flat polygon.  

 
The following formula is in use: 

𝐼(𝐱) = lim
→0

𝐼(𝐱) =

lim
→0

∬ (𝛏)
𝜕2

∂𝐧𝐱 ∂𝐧ξ

1

|𝐱′−𝛏|
𝑑𝑆𝜉𝑆

, 

(12) 

 
It has been assumed the point 𝐱′=x+𝐧𝐱 belongs 

the normal 𝐧𝐱 to the surface S in the point x (the 
normal has been directed along the Oz axis). Denote 
by (xi,yi,zi) (i=1,2,...n) coordinates of the vertices Mi  

of polygon S, and let x=(x0,y0,z0), 𝛏 = (𝑥, 𝑦, 𝑧). 
Since S is the flat domain, the integral in (12) just 
before the limiting value has been calculated by: 

𝐼(𝐱′) = 
0 ∬ [−

1

𝑟1
3 +

32

𝑟1
5 ] 𝑑𝑆𝑦𝑆

,  𝑟1 =

√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 2. 

(13) 

 
In the polar coordinate system x – x0 = cos, y–

 y0 =sin, and after some transformation, integral 
(13) became: 

𝐼(𝐱′) = 
0

∑ ∫ 𝑑
𝑖+1

𝑖

𝑛
𝑖=1 ∫ [−

1

𝑟1
3 +

()

0

32

𝑟1
5 ]d, 

(14) 

where 


𝑖
= arcsin

𝑦𝑖−𝑦0

𝑟𝑖0
,  𝑟𝑖0 =

√(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2 + 2, 𝑖 =
1,2, , … 𝑛, 

𝑛+1
= 

1
, 

ρi() =
𝑐𝑖

sin(−
𝑖
∗)

, 𝑐𝑖 =

[(𝑦𝑖−𝑦0)(𝑥𝑖+1−𝑥𝑖)−(𝑥𝑖−𝑥0)(𝑦𝑖+1−𝑦𝑖)]

𝑟𝑖,𝑖+1
, 

𝑖
∗ =

arcsin
𝑦𝑖+1−𝑦𝑖

𝑟𝑖+1,𝑖
, 

𝑟𝑖+1,𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 + 2,  
𝑦𝑛+1 = 𝑦1, 𝑥𝑛+1 = 𝑥1. 

 

 
So, it has been obtained the following formula: 

I(x)= 
0

∑ 𝐽𝑖(𝐱)𝑛
𝑖=1 , 

    𝐽𝑖(𝒙) = ∫ (grad
1

𝑟
× 𝐧)

𝑙𝑖
⋅ 𝑑𝐥𝑖.  

(15) 

 
Here li are the line segments connected vertices 

Mi and Mi+1 of the considered polygon, Mi=(xi ,yi ,zi) 
and Mi+1=(xi+1, yi+1, zi+1). The straight line equation li 
in the parametric form could be written as: 

𝑥 = 𝑥𝑖+1 + (𝑥𝑖+1 − 𝑥𝑖)𝑡, 
𝑦 = 𝑦𝑖+1 + (𝑦𝑖+1 − 𝑦𝑖)𝑡, 
𝑧 = 𝑧𝑖+1 + (𝑧𝑖+1 − 𝑧𝑖)𝑡. 

 

 
The next vectors has been presented as:  

𝐥𝑖
= (𝑥𝑖+1 − 𝑥𝑖 , 𝑦𝑖+1 − 𝑦𝑖 , 𝑧𝑖+1 − 𝑧𝑖), 

𝐫𝑖 = (𝑥𝑖 − 𝑥0, 𝑦𝑖 − 𝑦0, 𝑧𝑖 − 𝑧0),
𝐧 = (𝑛1, 𝑛2, 𝑛3). 

 

 
Then it will be obtained: 

(grad
1

𝑟
× 𝐧) ⋅ 𝑑𝐥𝑖 =

=
1

𝑟3 |
𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑥 − 𝑥0 𝑦 − 𝑦0 𝑧 − 𝑧0

𝑛1 𝑛2 𝑛3

|, 

(16) 

where 
𝑑𝑥 = (𝑥𝑖+1 − 𝑥𝑖)𝑑𝑡,     𝑑𝑦 = (𝑦𝑖+1 − 𝑦𝑖)𝑑𝑡,

𝑑𝑧 = (𝑧𝑖+1 − 𝑧𝑖)𝑑𝑡. 
 

 
After integrating over t from 0 to 1, the follow 

formula will be obtained: 
    𝐽𝑖(𝒙) =

([𝒍𝑖×𝐫𝑖]⋅𝐧)

|[𝐥𝑖×𝐫𝑖]|2 [
(𝐥𝑖⋅𝒓𝑖+1)

𝑟𝑖+1
−

(𝐥𝑖⋅𝐫𝑖)

𝑟𝑖
] , 

 

   
(17) 

Here 𝑟𝑖 = |𝐫𝑖| 
 
Using formulas (15), (17), one could estimate 

the considered hypersingular integral over the flat 
polygon, arbitrarily oriented in space. 

If the integration domain is a rectangular in the 
form 𝑆 = [−𝑏 < 𝑥 < 𝑏, −𝑙 < 𝑦 < 𝑙], then equation 
(18) takes the next simplified form: 

𝐼(𝒙) = 
0

𝐿(𝒙), (18) 

𝐿(𝒙) = [−
√(𝑥−𝑏)2+(𝑦−𝑙)2

(𝑥−𝑏)(𝑦−𝑙)
+

+
√(𝑥−𝑏)2+(𝑦+𝑙)2

(𝑥−𝑏)(𝑦+𝑙)
+ 

+
√(𝑥+𝑏)2+(𝑦−𝑙)2

(𝑥+𝑏)(𝑦−𝑙)
−

√(𝑥+𝑏)2+(𝑦+𝑙)2

(𝑥+𝑏)(𝑦+𝑙)
]. 

 

 
The computational domain has been discretized by 
𝑁𝑆 boundary elements as: 

𝑆 = ⋃ 𝑆𝑘 ,
𝑁𝑆
𝑘=1     (19) 

where 𝑆𝑘 are flat polygons. The unknown density 
will be denoted as (𝛏) is a constant over each 
boundary element 𝑆𝑘 and denoted by 

𝑘
. Let 

𝐱0𝑗, 𝑗 = 1,2, … , 𝑁𝑆 be the collocation points. These 
points are selected as the centroids of the boundary 
elements. The hypersingular integrals over the 
boundary elements are computed using the formulas 
(15)-(17). The following system of linear algebraic 
equations has been gained 

∑ 𝐻𝑘𝑗𝑘
= 𝑓(𝐱0𝑗)

𝑁𝑆
𝑘=1 ,   𝑗 = 1,2, . . . 𝑁𝑆 , (20) 
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to determine the discrete values 
𝑘

 of the unknown 
density (𝛏). Here:  

𝐻𝑘𝑗= 1

4𝜋
∬

𝜕2

∂𝐧𝐱 ∂𝐧ξ

1

|𝐱𝟎𝒋−𝛏|
𝑑𝑆𝑘𝑆𝑘

, . 
𝑘

= (𝐱0𝑘). 

 
So, the discrete analogue is obtained for 

hypersingular integral equation (10), i. e. 
hypersingular integral equation (10) has been solved 
due to reducing to the f system of linear algebraic 
equations (20). 

 
3.2 Application to Fluid-Structure 

Interaction Problems 
Hypersingular integral equations (HIE) are highly 
effective for solving fluid-structure interaction 
problems, particularly when structural elements are 
in bilateral contact with liquids. This approach 
significantly reduces the dimensionality of the 
resulting systems of linear algebraic equations. 
Additionally, applying HIE enables direct solutions 
for the desired unknown functions without requiring 
further complex calculations 

In this paper fluid-structure interactions 
involving structural elements submerged in liquid is 
examined. This study applies the normal mode 
method [26], in this approach, the vibration mode of 
a structural element interacting with a fluid has been 
expressed as a linear combination of the element's 
natural modes in vacuo (i.e., without the influence 
of the surrounding fluid mass). One of the main 
advantages of this method is that the natural 
vibration modes in vacuo could be determined using 
various techniques, such as analytical solutions or 
the boundary and finite element methods. While 
analytical solutions are typically only feasible for 
structural elements with simple geometries, the 
finite element method necessitates discretizing the 
entire fluid domain, which results in significantly 
higher computational costs compared to boundary 
element methods. The vibrations of the deformable 
element within the fluid are governed by a system of 
differential equations, [22] 

𝐌𝐔̈ + 𝐊𝐔 = 𝐟𝑝𝑟 + 𝐟𝑠,  (21) 
where 𝐌 and 𝐊 have been designated the mass and 
stiffness matrices, respectively, 𝐟𝑝𝑟  is the vector 
characterizing the fluid pressure overfall, and 𝐟𝑠 is 
an external forces vector. 
 

The pressure overfall 𝐟𝑝𝑟 over S has been 
calculated by the follow formula:  

𝐟𝑝𝑟 = −0



𝑡
[ +(𝐱, 𝑡) − − (𝐱, 𝑡)]𝐧, 

where 0 is the liquid density,  is the velocity 
potential, and 𝐧 is the unit positive normal to the 
surface S. 

 
To determine the unknown potential , the next 

boundary value problem for Laplace’s equation has 
been formulated: 

∆ = 0,
∂(𝐱)

∂𝐧± = (
𝐔

𝑡
, 𝐧), grad | = 0.   (22) 

 
According to [26] there will be gained: 

𝐔(𝐱, 𝑡) = ∑ 𝑐𝑘(𝑡)𝐮𝑘(𝐱)𝑁
𝑘=1 , 

where 𝑐𝑘(𝑡) are the unknown time-dependent 
coefficients, and 𝒖𝑘(𝐱) are the structural element 
vibration modes of the in vacuo. These functions 
were calculated using the finite element method as 
in [4]. Then the unknown potential has been 
expressed as 

(𝐱, 𝑡) = ∑ 𝑐̇𝑘(𝑡)
𝑘

(𝐱)𝑁
𝑘=1 . 

 
For the participial potentials 

𝑘
(𝐱) the 

following boundary value problems have been 
formulated: 

∆
𝑘

= 0,
∂𝑘(𝐱)

∂𝐧± = (𝐮𝑘 , 𝐧), grad
𝑘

 |


 = 0    (23) 
 

After receiving the basis functions 𝐮𝑘 and 
𝑘

, 
one could obtain the following relations: 

∑ [𝑐̈𝑘(𝑡)𝐌𝐮𝑘 + 𝑐𝑘(𝑡)𝐊𝐮𝑘]𝑁
𝑘=1 =  

= −
𝑙

∑ 𝑐̈𝑘(𝑡)[
𝑘
+(𝐱) − 

𝑘
− (𝐱)]𝐧𝑁

𝑘=1 +𝐟𝑠.   (24) 
 

To define 
𝑘
 the boundary element method is in 

use [27], so the solution of boundary value problem 
(23) for each k is the double layer potential along 
the surface S with the unknown density 

𝑘
(𝛏)   


𝑘

 (𝐱) =
1

4𝜋
∬ 

𝑘
(𝛏)

𝜕

𝜕𝐧𝜉

1

|𝐱−𝛏|
𝑑𝑆 ,

𝑆
  

 
Note that 

𝑘
 (𝐱) satisfies Laplace’s equation and 

Sommerfeld’s condition, and 


𝑘
(𝐱) = 

𝑘
+(𝐱) − 

𝑘
− (𝐱). 

 
To evaluate 

𝑘
 (𝐱) the hypersingular integral 

equation (10) with the right parts in the form (𝐮𝑘, 𝐧) 
has been applied. Then according the equation (24) 
dot product sequentially with the functions 𝐮𝑙(𝐱) 
the next second order system of differential 
equations has been obtained: 

𝐌𝒔[𝐜̈] + 𝐌𝒍[𝐜̈] + 𝐊𝒔[𝒄] = f̃𝑠,  (25) 
where  
𝐌𝒔 = (𝐌𝐮𝑘 , 𝐮𝑙), 𝐊𝒔 = (𝐊𝐮𝑘 , 𝐮𝑙),f̃𝑠 = (𝐟𝑠, 𝐮𝑙). 
 
The added masses matrix 𝐌𝒍 = {𝑀𝑙(𝑖,𝑘)} has been 
determined as: 
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𝑀𝑙(𝑖,𝑘) = 0 ∬ 
𝑖
(𝐱)𝑤𝑘(𝐱)𝑑𝑆

𝑆
.  (26) 

 
After determining 𝐌𝒍 and supposing: 

𝑐𝑘(𝑡) = exp (𝑖t) with f̃𝑠 = 0, 
the eigenvalue problem  

[Ks– 2(Ms+Ml)]W = 0  (27) 
Has been solved using the method developed in 
[28]. 
 
3.3  Benchmark Test  
To validate the method and determine the necessary 
number of boundary and finite elements, a test case 
from [29] is used, which compares theoretical 
results from various authors [29], [30] with 
experimental data [31]. As detailed in [29], the test 
involves a square elastic cantilever plate with the 
following mechanical and geometric properties: side 
length a=10 m, thickness h=0.238 m, Young's 
modulus E=2.06 GPa, Poisson’s ratio ν=0.3, 
material density s is 7830kg/m3, and liquid density 
0 is 1000kg/m3. The plate is submerged in water, 
as shown on Figure 2. 
 

 
Fig. 2: The plate immersed in water 

 
In the FEM calculation, the liquid domain is 

modeled as a parallelepiped with dimensions of 30 
m by 30 m by 14 m, where 6 m lies above the plate 
and 78m below it. The finite element mesh for the 
plate contains 4,700 elements, Figure 3, while the 
liquid The grid is refined near the plate to enhance 
accuracy in capturing the fluid-structure 
interactions. In the FEM model, this thickened mesh 
provides more detailed resolution in the regions 
close to the plate surface, improving the calculation 
precision in these critical areasdomain is discretized 
into 38,500 elements, Figure 3(a)). 

One key advantage to use the Boundary 
Element Method (BEM) is that only the boundary of 
the computational domain needs to be discretized. In 
this case, the boundary consists solely of the elastic 
plate, as it has been assumed to be immersed in an 
infinite liquid domain. The Sommerfeld radiation 
condition at infinity has been inherently satisfied by 

the characteristics of the double-layer potential. As a 
result, the boundary element mesh for the 
computational domain has been reduced to just 970 
elements, as shown in Figure 3(b)). 

 
(a) 

 
(b) 

Fig. 3: Finite and boundary element grids 
 
Initially, the modes and frequencies of the plate 

in a vacuum have been determined using FEM, [5]. 
These computed modes have been applied as input 
data to solve the hypersingular integral equation 
(10) with the right parts in the form (𝐮𝑘 , 𝐧) and, in 
turn, to derive the added mass matrix (26). 

Table 1 presents the calculated frequencies of 
the plate both in a vacuum and submerged in water, 
applying several numerical techniques, such as the 
finite and boundary element methods, alongside a 
comparison with experimental data, [31]. 

 
Table 1. Frequencies of cantilever square plate 

immersed in water. Results comparison 
     
Mode 

num-

ber 

 

In vacuo 

 

In water 

[29] [30] Present 

method, 

FEM 

[29] [30] Present 

method 

BEM 

Expe-

riment 

[31] 

1 12.93 12.94 12.94 7.00 7.35 7.35 6.56 
2 31.69 31.93 32.09 17.16 20.19 21.06 19.66 
3 79.37 79.80 77.92 42.98 50.11 47.54 45.20 

 
Test calculations provide an estimate of the 

required number of finite and boundary elements 
needed to achieve the desired accuracy and 
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demonstrate the effective application of the HIE 
technique in fluid-structure interaction problems. 
 

 

 

3.4  Estimation of Aerodynamic Loads  
After numerical solution of system (20), we obtain 
the unknown function (𝐱𝟎𝒋) in the collocation 
points 𝐱𝟎𝒋 = (𝑥0𝑗, 𝑦0𝑗). Then the pressure drop Δ𝑃 
has been gained using formula (5), where grad  has 
been calculated using finite difference formulas, 
namely: 

grad (𝐱) = (


𝑥
,


𝑦
), 

(𝐱𝟎𝒋)

𝑥
=

(𝑥0𝑗+1,𝑦0𝑗)−(𝑥0𝑗,𝑦0𝑗)

𝑥0𝑗+1−𝑥0𝑗
, 

(𝐱𝟎𝒋)

𝑦
=

(𝑥0𝑗,𝑦0𝑗+1)−(𝑥0𝑗+1,𝑦0𝑗)

𝑦0𝑗+1−𝑦0𝑗
.   

     
Then with the known function Δ𝑃, the 

distributed loads qx, qy and torque mz have been 
evaluated by the following formulas: 

qx =qx i, qy = qy j, qx =Pcos(nx), qy = 
Pcos(ny),  mz = P(nr). 

(28) 

 
In the numerical implementation of system (20), 

the numbers of integration subdomains have been 
assumed to be equal to NS=100100). In each 
subdomain, hypersingular integrals have been 
evaluated analytically using formulas (18). 
Increasing the values of NS2  did not lead to a 
significant change in the results. In Figure 4(a) and 
Figure 4(b) graphs of the lateral loads distribution 
and torque along the length of the blade have been 
shown. 

   
(a) 

 
(b) 

Fig. 4: Lateral load and torque distributions 
 The maximum displacement u in the plane of 

rotation of the wind wheel, normal to the OZ axis, is 
160.9 cm. The maximum bending stresses arise in 
the cylindrical part of the extension and reach 
290.8 MPa, in the root section of the blade, the 
stress is 73.8 MPa. 

Stress distributions over the blade cross section 
and along the blade axis have been demonstrated on 
Figure 5(a) and Figure 5(b). 

 

 
(a) 

 

 
(b) 

Fig. 5: Stress distribution 
 

It is important to note that the stresses z remain 
nearly constant over most of the blade, as shown in 
Figure 3(b). This outcome is due to the variation in 
the cross-sectional parameters along the length of 
the blade. 

After evaluating the aerodynamic loads, the 
stress-strained state of the blade as well as free 
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vibration frequencies have been determined 
according to [32].  

Displacements of the cross section have been 
represented as translational movements of the 
bending center and rotation of the section, relative 
to the bending center 

𝑈 = 𝑢 − θ(𝑦 − 𝑦𝑢), 𝑉 = 𝑣 + θ(𝑥 − 𝑥𝑢), 
𝑊 = 𝑤 − 𝑢′𝑥 − 𝑣′𝑦 + θ′, 

(29) 

where U, V, W are displacements of an arbitrary 
section point with (x, y, z) coordinates, u, v, w are 
displacements of the center of the section gravity, θ 
is an angular displacement around the bending 
center, 𝑥𝑢, 𝑦𝑢 are coordinates of the bending center, 
 is the deflation function, and ( )′ = 𝑑( )/𝑑𝑧. 

The deformation’ values at an arbitrary point (x, 
y, z) when using the kinematic model (29) have been 
expressed as follows¨¨ 

ε𝑧 = 𝑤′ − 𝑢″𝑥 − 𝑣″𝑦 + θ″ϕ +

θ′τ0 [
∂

∂ξ
(η − ηu) −

∂

∂η
(ξ − ξu)] , ε𝑥 = ε𝑦 =

ε𝑥𝑦 = 0, 
γ𝑥z = θ′ [

∂

∂ξ
cos α −

∂

∂η
sin α − (𝑦 − 𝑦u)], 

γ𝑥𝑧 = θ′ [
∂

∂η
sin α +

∂

∂ξ
cos α + (𝑥 − 𝑥u)], 

 
(30) 

where ξ, η are main central axes of the section, α(z) 
is the twist angle, τ0 = ′. 
 

The potential energy of the blade deformation 
has been expressed by the integral 

Π =
1

2
∫ ∫ [𝐸𝜀𝑧

2 + 𝐺(γ𝑥𝑧
2 +

𝑆(𝑧)

𝐿

0

𝛾𝑦𝑧
2 )]  𝑑𝑆(𝑧)𝑑𝑧, 

(31) 

where E and G are the elastic moduli of the material 
in tension and shear. 
¨ 
The work of centrifugal forces AC has been 
determined by the expression 

𝐴𝐶 = ρΩ2 ∫ [θ𝐽𝑥𝑦 + 𝑤(𝑅 + 𝑧)𝑆(𝑧)]
𝐿

0

𝑑𝑧, 
(32) 

where R is wind wheel radius, and  
𝐽𝑥𝑦 = ∫ 𝑥𝑦𝑑𝑆

𝑆
.  

¨ 
The variational equation of elastic equilibrium 

has been obtained based on Lagrange’s principle of 
possible displacements 

δΠ − δ𝐴𝐶 − δ𝐴 = 0, (33) 
here A is the work of distributed aerodynamic loads. 
In the numerical implementation, the finite element 
method [32] has been used to solve problem (33), a 
two-node element with cubic approximation of 
normal displacements u, v and linear approximation 
of axial displacement w is used. In this research 96 
finite elements have been used for elastic analysis. 
 

3.5 Hybrid Optimization Method with 

Adaptive Control 
For the optimal design of complex multi-parameter 
objects of the considered type, it is useful to apply 
an automatic hybrid search optimization method [1] 
to determine the local optimal vector X* for the 
conditional extremum problem, specifically in the 
context of problems (1)-(4). 

An analysis of optimization procedures and the 
characteristics of solving optimal design problems 
reveals that simply accumulating effective methods 
in a software library, or even incorporating an 
interactive solution mode, does not create the 
necessary conditions for effective optimization. This 
is because the given problem does not come pre-
equipped with the relevant set of attributes that 
would allow the control metaprogram to identify the 
situation and select the appropriate method. 

The proposed method essence is as follows. 
There are a number of hybrid methods that make up 
the hybrid coalition {Mi}. The criterion Q() has 
been set, which determines during the process, 
which of the hybrids in given situation  could be 
used to achieve the goal most effectively. This 
criterion includes information characterizing the 
changing situation ; namely, specificity of the 
structure and metric parameters of the space, where 
the search has been carried out, prehistory of the 
computing process by which a possible continuation 
has been established as well as behavior of the 
functions that determine the problem to solve. The 
control function u = u(Q()) has been introduced, 
which establishes an adaptive strategy to put into 
operation a specific hybrid Mk {Mi}, i = 1,..., k,..., 
s (or a group of methods-hybrids). The joint actions 
of methods-hybrids ensure a more effective 
achievement of the aim than each of the coalition 
individually hybrids. This could be achieved by 
introducing special adaptive control, which obtains 
vectors of minimizing sequences {Xkr}, search 
directions Dir Xkr, and search adaptive steps hkr, in 
accordance with the changing situation . 
 
In general, adaptive control u could be represented 
as 

{

𝑋𝑘
𝑟

Dir 𝑋𝑘
𝑟

ℎ𝑘
𝑟

} = ∑ 𝑢𝑖(𝑄(𝜎𝑘))𝑠
𝑖=1  {

𝑋𝑘
𝑀𝑖

Dir𝑋𝑘
𝑀𝑖

ℎ𝑘𝑖

} ,

∑ 𝑢𝑖(𝑄(𝜎𝑘))𝑠
𝑖=1 = 1, 

 
(34) 

where 𝑢𝑖(𝑄(𝜎𝑘)) are non-negative control functions 
defined on the set {σ𝑘}of situations, 𝑋𝑘

𝑟 , Dir 𝑋𝑘
𝑟, and 

ℎ𝑘
𝑟  are the point, the direction emanating from this 

point, and the adapting search step generated by Mi 
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method from the coalition {Mi}, respectively, k is 
the iteration number.  
¨ 

The hybridization operation or obtaining the 
hybrid point at the kth step of the process could be 
defined as the following matrix-vector product: 

𝑋𝑘
𝑟 = (𝑈𝑗

(𝑖)
) (𝑋𝑗

(𝑖)
 𝑉(𝑟)), ∑ 𝑈𝑗

(𝑖)
=𝑁

𝑖=1

∑ 𝑉𝑗(𝑟)𝑁
𝑗=𝑘−𝑟+1 = 1,  𝑗 =

𝑘 − 𝑟 + 1, 𝑘,  𝑘 ≥ 𝑟, 

(35) 

where (𝑈𝑗
(𝑖)

) and (𝑋𝑗
(𝑖)

) are matrices (of 
dimensions (𝑟 × 𝑁)) of control and state, the 
elements of which are controls 𝑈𝑗

(𝑖) (scalars) and 
approximations 𝑋𝑗

(𝑖) (vectors of dimension n) of 
hybridients at a given step j, 𝑉𝑗(𝑟) is r-dimensional 
“compression” vector with scalar components, r is 
the memory depth of hybrids, and N is their number. 
The special product of scalar (𝑈𝑗

(𝑖)
) and vector 

matrices (𝑋𝑗
(𝑖)

) gives the vector Z, which 
components are vectors in the form 

𝑍𝑗 = ∑ 𝑈𝑗
(𝑖)

𝑚

𝑖=1

𝑋𝑗
(𝑖)

, . 

𝑗 = 𝑘 − 𝑟 + 1,  𝑘,  𝑘 ≥ 𝑟 

(36) 

 
The following method modifications have been 

chosen as hybrids Mi for this version of the hybrid 
optimization method: adaptive step-by-step descent, 
Abramov scheme, ravine modification, the pattern 
recognition algorithm [33], Hooke-Jeeves, Davidon-
Fletcher-Powell methods, parallel tangent method, 
secant motion along the boundary of region G, [15].  

On the each selected search directions, one-
dimensional minimization of the aim function has 
been carried out according, [12]. In [2] it has been 
presented the hybrid method could solve a wide 
class of problems much more efficiently than each 
of the abovementioned hybrids. 
 
 
4  Results and Discussion 
To gain the optimal design, the wind turbine blade 
with the following parameters has been 
investigated: L= 4 m, elastic modulus E=5105MPa, 
Poisson's ratio =0.3, material density =1.6103 
kg/m3, wind wheel rotation speed  = 20 rpm, wind 
speed 10m/s, []=200 MPa, frequency range [1] = 
0.1Hz, [2] =10Hz. The blade width varied from 1 
m to 0.6 m. 

In the problem solving process, the fields of 
displacements and stresses in the blade under 

aerodynamic loads have been clarified. The section 
number has been chosen equal to 28.  

The maximum displacement in the plane of the 
wind wheel rotation, normal to the OZ axis, is 28.5 
cm, maximum bending stresses in the root section of 
the blade is 12.8 MPa, and the first frequency of 
natural oscillations is equal to 2.28 Hz.  Table 2 
presents the solution results of optimization problem 
for the blade sections Zi series. The initial values of 
thickness in sections h0 and optimal parameters h* 
have been shown. In the initial version, the mass of 
the blade was equal to 19.38 kg. 

As a optimization result, the blade with 16.64kg 
weight has been gained. The only active restriction 
was the blade displacement. The natural oscillation 
frequency has been changed slightly during the 
counting process, this change did not violate the 
specified restrictions. Thus, methods to calculate 
aerodynamic loads and analyze the stress-strain state 
of the wind turbine blades highlited high efficiency 
and accuracy, which made it possible to formulate 
and solve optimization problems that require 
repeated verification calculations. Using the 
developed in-house hybrid adaptive method, the 
problem of weight optimization of wind turbine 
blades has been solved. 
 

Table 2. Initial and Optimal Blade Parameters 
Section 
Number 

Coordinate z, 
m 

Initial 
Thickness, 

mm 

Optimal 
Thickness, 

mm 
1 0.800 6.0 5.04 
2 1.236 5.6 4.73 
3 1.818 5.0 4.21 
4 2.400 4.4 3.67 
5 2.836 4.0 3.25 
6 3.564 3.2 2.41 
7 4.000 3.0 2.19 

 
 

5   Conclusion and Further Research 
An effective method for weight optimization of 
wind turbine blades has been proposed.  

The mathematical model has been simulated to 
identify the air pressure on the wind turbine blade 
based on the hypersingular integral equations 
method, namely the boundary element method for 
its numerical application. In this study, a new 
version of a method to solve nonlinear programming 
problems has been developed, which combines 
several optimization techniques through adaptive 
control. It has been assumed that the unknown 
densities remain constant along the elements. The 
adaptive hybrid method of nonlinear programming 
has been applied to optimize the weight of the blade. 
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The blade of wind turbines has been evaluated, 
which enabled a reduction in its weight while still 
adhering to design and strength requirements. A 
major advantage in the practical application of the 
new blade design could be the blades' extension 
service life and the impact on the environmental 
minimization of wind power plants in the event of 
their premature destruction under wind loads and 
precipitation. 

The further research in the area will be 
concerned with implementation of innovative 
composite materials for wind turbine blades 
producing, [34]. It allows to improve turbine blades 
mechanical characteristics. The proposed approach 
will be also generalized to strength and dynamical 
analysis of wind turbines with a vertical axis of 
rotation [35] as well as their weight optimization. 
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