FIRE PERFORMANCE OF MATERIALS AND STRUCTURES

EDITED BY Prof. Gonzalo Martínez-Barrera Dr. Stanislav Kolisnychenko

States of the second

TRANS TECH PUBLICATIONS

Fire Performance of Materials and Structures

Edited by Prof. Gonzalo Martínez-Barrera Dr. Stanislav Kolisnychenko Copyright © 2025 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of the contents of this publication may be reproduced, processed or transmitted in any form or by any means without the written permission of the publisher.

Trans Tech Publications Ltd Seestrasse 24c CH-8806 Baech Switzerland https://www.scientific.net

Volume 42 of Specialized Collections ISBN 978-3-0364-0769-2

Full text available online at https://www.scientific.net

Distributed worldwide by

Trans Tech Publications Ltd Seestrasse 24c CH-8806 Baech Switzerland Phone: +41 (44) 922 10 22

e-mail: sales@scientific.net

Table of Contents

Preface

Chapter 1: Fire Retardancy and Thermal Decomposition of Biopolymers and Biocomposites

Development of Advanced Bio Thermoset Polymers from Sustainable Resources K. Khiari, A. Berrouane and M. Derradji	3
Investigation of Thermomechanical and Flammability Behaviors of Hemp/Polypropylene Reinforced Polylactic Acid Composites D. Jeyasimman, J.A. Prakash, R.A. Prasath, A. Sivaraman, P. Singh and P. Satishkumar	9
Handling Composites at Aircraft Accident Sites: An Evaluation of the Fracture Features in Burnt CFRP after the Application of a Fixant Solution N. Zimmermann, P.H. Wang and K. Pullen	21

Chapter 2: Fire Resistance of Green Concrete

The Influence of Organic Fibers on the Fire Resistance of Concrete J. Klobása and R. Hela	29
Performance Evaluation of Sustainable High-Strength Lightweight Concrete Incorporating Wastes as Aggregates at Elevated Temperatures A.M. Tahwia, M. Amin, N. Abdelaziz and A.M. Heniegal	35
Geopolymer-Concrete-Based Eco-Friendly and Fire-Resistant Concrete Structures: Effect of Exposure to High Temperature at Varying Heating Duration S.N. Abd Razak, N. Shafiq, L. Guillaumat, S.A. Farhan and V.K. Lohana	53
Evaluation of the Mechanical Properties of Recycled Coarse Aggregate Concrete against the Action of Fire A.J. Lamas Chavez, A.F. Aliaga Guevara and P.J.P. Torres	61
Investigation of NWC and Structural LWC Using Local Material in the UAE Exposed to Elevated Temperatures H. Alharmoodi, R. Hawileh, A. Hajjaj, A. Aljarwan and J.A. Abdallah	71

Chapter 3: Fireproofing Evaluation of Reinforced Concrete and Structures

The Efficiency of Non-Destructive Testing to Estimate the Damage Level of Fiber- Reinforced Concrete Exposed to High Temperatures A.M. Nefoussi, E. Mohammed, H. Siad, R. Chihaoui, M. Mouli, M. Lachemi and A. Kada	83
Evaluation of Structural Response in Ultra-High-Strength Concrete and Carbon Fiber Reinforced Frames Exposed to High Temperatures Using Numerical Simulation D.L. Manco, A.L. Palacios, V.I. Davila, J.R. Casas and R.M. Delgadillo	101
Method of Identification of Mechanical Characteristics of Concrete of Reinforced Concrete Crossbars according to the Results of Fire Tests S. Pozdieiev, O. Nekora, S. Fedchenko and T. Shnal	109
Assessment of the Influence of Features of Crack Formation in Reinforced Concrete Products on their Fire Resistance A. Vasilchenko, O. Danilin, E. Darmofal and T. Lutsenko	117
Effect of Slenderness Ratio on the Behavior of RC Bearing Walls under Fire Exposure M. Assad, R. Hawileh, G. Karaki and J.A. Abdallah	125
Investigation the Effects of Fire on an Industrial Metallic Structure A.C. Murariu, I. Duma and I.A. Perianu	135

Chapter 4: Combustion Modelling

Cluster Mechanism of the Explosive Processes Initiation in the Matter D. Tregubov, Y. Slepuzhnikov, M. Chyrkina-Kharlamova and A. Maiboroda	145
Thermodynamic Calculations of the Main Characteristics of the Combustion Process of Pyrotechnic Nitrate-Metallized Mixtures with Additives of Organic and Inorganic Substances under External Thermal Influences	157
N. Koziar, O. Kyrychenko, A. Khyzhniak and O. Diadiushenko Regulations of the Influence of External Thermal Influences on Speed and Explosive Safe Combustion Modes of Pyrotechnic Nitrate-Metallized Mixtures with Metal Fluoride	107
N. Koziar, O. Kyrychenko, K. Viktoriia and O. Diadiushenko	169

CHAPTER 4:

Combustion Modelling

Cluster Mechanism of the Explosive Processes Initiation in the Matter

TREGUBOV Dmytro^{1,a*}, SLEPUZHNIKOV Evgen^{1,c}, CHYRKINA Maryna^{1,d}, MAIBORODA Artem^{2,d}

¹National University of Civil Defence of Ukraine, 94, Chernishevska str., Kharkov, Ukraine, 61023

²Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, 8, Onoprienka str., Cherkasy, Ukraine, 18034

^acxxttregubov1970@nuczu.edu.ua, ^bslepuzhnikov@nuczu.edu.ua, ^cmarina_ch25@ukr.net, ^dmayboroda101@gmail.com

Keywords:characteristic temperature, autoignition, detonation, oscillation, n-alkanes, cluster, peroxide structures, explosion hazard.

Abstract. The relationship between substance characteristic temperatures: autoignition, melting, flash, boiling is demonstrated and analyzed. Based on the oscillatory and step changes presence, a conclusion was made about the supramolecular structures presence and periodicity in the n-alkanes homologous series. A method for modeling equivalent lengths of peroxide supramolecular structures for predicting the explosion and fire hazard parameters of n-alkanes is proposed. An approximation dependence was developed for predicting autoignition temperatures t_{ai} of n-alkanes. It is shown that stoichiometric concentrations of the various supramolecular peroxide structures formation accord to different flammability and explosion limits. A correlation between t_{ai} and Anti-Knock Index (AKI) was established. An approximation dependence was developed for predicting n-alkanes AKI. The detonation propensity index K_D was introduced based on cluster supramolecular structures modeling and melting temperatures. It is shown that K_D indicator correlates with the n-alkanes AKI and the explosives detonation velocity. The possibility of taking into account during calculations the supramolecular structures presence at the combustion stage confirms their existence.

1 Introduction

Explosive processes are often used in the industry, for military purposes, and they also become the consequences of safety rules violating for handling certain substances. However, corresponding mechanisms for the transformations initiation in substances or combustible mixtures have not been definitively established. Therefore, improving theoretical models that explain these processes and developing appropriate mathematical models for predicting the explosive processes development remains an urgent issue. Spontaneous decomposition of explosive substances with the energy release can be modeled as autoignition according to a chain mechanism, since this process is characterized by the reactions jump-like self-acceleration. For this combustion occurrence type, the thermal explosion model is also used, when at a critical temperature in each mixture part, heat release begins and the temperature rises without heat loss to neighboring zones. For such a process, it is possible to propose the instantaneous emergence model of a substance supramolecular structure. Then, at the next stage, these unstable supramolecular structures will be destroy and transform by free radical mechanisms.

Establishing the substance's ability reasons to undergo explosive transformations can provide a new perspective on explosive substances properties and creates new opportunities for ensuring the explosive processes safety. These questions are related to solving the establishing problem the first elementary act of substance state changing before the explosion. Therefore, establishing the substance structure peculiarities at explosive transformations initial stages is an urgent scientific task.

2 Literature Review

The occurrence of explosive and fire hazards can be considered in three directions: the detonation danger, the autoignition danger, and the presence of explosion hazard concentration

Author Index

A

Α			
Abd Razak, S.N.	53	K	
Abdallah, J.A.	71, 125	Kada, A.	83
Abdelaziz, N.	35	Karaki, G.	125
Alharmoodi, H.	71	Khiari, K.	3
Aliaga Guevara, A.F.	61	Khyzhniak, A.	157
Aljarwan, A.	71	Klobása, J.	29
Amin, M.	35	Koziar, N.	157, 169
Assad, M.	125	Kyrychenko, O.	157, 169
В		L	
Berrouane, A.	3	Lachemi, M.	83
		Lamas Chavez, A.J.	61
С		Lohana, V.K.	53
Casas, J.R.	101	Lutsenko, T.	117
Chihaoui, R.	83		
Chyrkina-Kharlamova, M.	145	Μ	
Chyrkina Kharlaniova, Wi	115	Maiboroda, A.	145
D		Manco, D.L.	101
	115	Mohammed, E.	83
Danilin, O.	117	Mouli, M.	83
Darmofal, E.	117	Murariu, A.C.	135
Davila, V.I.	101		
Delgadillo, R.M.	101 3	Ν	
Derradji, M. Diadiushanka, O		Nefoussi, A.M.	83
Diadiushenko, O. Duma, I.	157, 169 135	Nekora, O.	109
Duilla, I.	155	Nekola, O.	109
F		Р	
Farhan, S.A.	53	Palacios, A.L.	101
Fedchenko, S.	109	Perianu, I.A.	135
		Pozdieiev, S.	109
G		Prakash, J.A.	9
Guillaumat, L.	53	Prasath, R.A. Pullen, K.	9 21
Н			
	71	S	
Hajjaj, A.	71	Satishkumar, P.	9
Hawileh, R.	71, 125	Shafiq, N.	53
Hela, R.	29 35	Shnal, T.	109
Heniegal, A.M.	35	Siad, H.	83
T		Singh, P.	9
J		Sivaraman, A.	9
Jeyasimman, D.	9	Slepuzhnikov, Y.	145

All rights reserved. No part of contents of this paper may be reproduced, processed or transmitted in any form or by any means without the written permission of Trans Tech Publications Ltd, www.scientific.net. (#0-10/07/25,14:34:45)

Keyword Index

A

Aircraft Accident Investigation Aircraft Accident Response Protocols	21 21
Autocatalytic	3
Autoignition	145
В	
Bending Reinforced Concrete Element	117
С	
Calculation Method	109
Carbon Fiber Reinforced	101
Changes in the Structure	29
Characteristic Temperature	145
Cluster	145
Combustion Processes	169
Composite Failures	21
Compressive Strength	71
Concrete	83
Concrete Fire Performance	71
Concrete Strength Reduction Factor	109
Crack Opening in Concrete	117
Cracking in Concrete	117
Critical Temperature	117
Crushed Lightweight Bricks	35
D	
Damage Level	83
Detonation	145

E

DSC

Elevated Temperatures	35, 125
Explosion Hazard	145
Explosive Spalling	29

F

-	
FE	125
FEM	101
Finite Element Modelling	125
Fire	125

135
53
29, 109
117
157, 169
21
9
53
21
3
9
3
101
61, 83
109
35
53
109
35, 61
135
169
135
145
83
101
101
145

9