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INTRODUCTION

Global population growth has made solid 
waste management (SWM) an increasingly essen-
tial concern in recent decades. The global popula-
tion is projected to rise from 8.2 billion in 2024 to 
a peak of approximately 10.3 billion by 2084, fol-
lowed by a slight decline to 10.2 billion by 2100, 
according to United Nations projections (Lam, 

2025). Uncontrolled urban solid waste growth, 
especially in megacities like Delhi, outpaces cur-
rent infrastructure, creating severe public health 
and environmental risks. This intensifies the de-
mand for scientifically informed decision-making 
frameworks to ensure long-term sustainability. 
The increase in population has a significant im-
pact on solid waste output, especially in metropol-
itan areas. Global research interest in sustainable 
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solid waste management has grown significantly 
in recent years, particularly in rapidly urbanizing 
regions such as China and India. This trend re-
flects increased demand for innovative tools that 
can address waste management challenges under 
uncertain and evolving conditions. (Rajpal et al., 
2024) This investigation concentrated on Delhi, 
the densely populated city in Northern India. 
In 2022, the population of Delhi’s metro area 
reached 32 million people, growing by 2.84% 
compared to the previous year. In 2021, Delhi 
faced the challenge of needing new landfill sites 
to accommodate the increasing amount of waste 
generated by its residents. The present endeavour 
sought to identify the most suitable new landfill 
locations by the Central Pollution Control Board 
(CPCB) guidelines. These guidelines ensure that 
landfill sites are selected based on environmental 
and social criteria to minimize negative impacts 
(Patil and Endait, 2021; Paul and Ghosh, 2022). 
Artificial intelligence (AI) models have been suc-
cessfully applied to urban environmental moni-
toring, enabling high-accuracy predictions under 
complex and dynamic urban conditions (Himeur 
et al., 2022). Fuzzy logic, as a rule-based uncer-
tainty modeling tool, enables city planners to 
deal with incomplete, imprecise waste data in 
decision-making—particularly valuable for com-
plex systems like MSWM. Recent research has 
highlighted that an AI-enhanced framework for 
air quality forecasting demonstrates the potential 
of machine learning (ML) in environmental deci-
sion-making (Halaktionov et al., 2025; Miller et 
al., 2025). Such techniques provide a strong prec-
edent for integrating fuzzy logic within LCA for 
waste management (Dewalkar et al., 2022).

For example, solid waste generation has in-
creased from 1.2 kg per day to 1.42 kg per per-
son globally in the last decade, and this pace is 
expected to grow even more in the future (Al-
zamora and Barros, 2020). MSW is a significant 
global problem because of population growth, 
fast economic development, and growing living 
standards. The problem is much worse in urban 
areas because poor management leads to environ-
mental pollution, which poses risks to the health 
of living organisms (Rajpal et al., 2024). MSW 
management is a multidisciplinary process that 
includes making, collecting, moving, processing, 
and, most importantly, getting rid of the trash, 
according to Prakash Javadekar, India’s Union 
Minister of State for Environment, Forests, and 
Climate Change. Now, India produces 62 million 

tons of garbage annually, of which 5.6 million 
tons are waste made of plastic and 0.17 million 
tons are biological materials (Ghosh, 2017). The 
annual production of hazardous trash is 7.90 mil-
lion tons, while the yearly e-waste output is fif-
teen lakh tons. In addition, only around 75 to 80 
per cent of the garbage generated in municipal 
areas is collected; of that amount, only 22 to 28 
per cent is processed and disposed of. Waste that 
is not handled or appropriately managed threat-
ens the environment and could lead to significant 
medical problems for people (Lee et al., 2004). 
Due to rapid urbanization and a lack of funding, 
technology, and governance, the problem of un-
controlled solid waste is especially significant in 
developing nations (Gupta et al., 2024). Further-
more, most developing-world cities are densely 
inhabited, unplanned, and lack appropriate road 
access, making solid waste collection and trans-
portation to disposal locations even more dif-
ficult. One of the current challenges of modern 
civilization is SWM. As with previous disposal 
practices, various scientific models have been 
used to solve trash disposal and management is-
sues are during the last few decades (Paul et al., 
2019). These models provide critical assistance in 
the proper management of MSW disposal issues. 
For MSW sites, the recommended models could 
be effectively coupled. The connected 1-dimen-
sional method accurately predicted the geograph-
ic and temporal distribution of settlement time 
and gas weight in multi-layered landfills in vari-
ous operating scenarios (Singh, 2019; Choudhury 
et al., 2022; Vais et al., 2023) (Figure 1).

Figure 2a and Figure 2b present a network 
visualisation graph that illustrates research con-
tributions from various countries in SWM and 
life cycle analysis. Figure 2 (a) focuses on the 
most widely used keywords in SWM. Keywords 
such as “MSW” and “Municipal Solid Waste” 
emerge as the most frequently utilised, indicating 
their central role in the literature. This visualisa-
tion underscores the primary areas of interest and 
research trends within the field, offering insights 
into the thematic focus of recent studies. Figure 2 
(b) highlights the country-wise publication analy-
sis, revealing that China, India, and the UK are 
leading in research efforts on SWM. These coun-
tries have made significant advancements in ad-
dressing waste management challenges through 
extensive research and development.

Despite cumulative global attention to SWM, 
there is a noticeable gap in recent literature 
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Figure 1. A large pile of municipal solid waste (MSW) being processed by heavy machinery 
at a landfill site Bhalswa, Delhi, India

Figure 2. Network visualization map: (a) keyword-wise distribution, (b) country-wise distribution
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concerning applying advanced mathematical 
methods and decision-making tools, such as 
fuzzy logic, to address the complex challenges 
of municipal waste management. Existing stud-
ies often focus on isolated aspects, such as treat-
ment technologies, waste reduction, or energy 
recovery, without a comprehensive combination 
of these techniques into an efficient framework 
(Rajpal et al., 2022). Furthermore, the environ-
mental implications of waste disposal in rapidly 
urbanizing regions like Delhi remain underex-
plored, as serious environmental implications 
exist regarding scientifically grounded solutions 
that control modern analytical methods (Kamboj 
and Choudhury, 2013).

Existing studies often address individual el-
ements such as treatment, cost, or emissions in 
isolation. However, few integrate fuzzy logic 
into a full life cycle assessment (LCA) of SWM 
systems in real-world metro settings. This study 
aims to bridge this gap by providing a holistic 
overview of how advanced mathematical mod-
els and MSW techniques can tackle the environ-
mental issues associated with municipal waste 
disposal. By assessing and comparing existing 
SWM methods through advanced tools, this ar-
ticle seeks to identify environmentally sound, 
scalable, and practical solutions tailored to the 
unique challenges of the North Indian urban 
landscape. This study integrates fuzzy logic into 
LCA to develop a robust decision-support frame-
work for MSWM, tested in Delhi, to evaluate cli-
mate, cost, and governance outcomes under un-
certainty. This study integrates fuzzy logic into 
LCA to develop a robust decision-support frame-
work for MSWM, tested in Delhi, to evaluate 
climate, cost, and governance outcomes under 
uncertainty. The study’s findings aim to contrib-
ute to developing sustainable waste management 

practices that align with global environmental 
and public health objectives.

THE SOLID WASTE MANAGEMENT (SWM) 
RULES, 2016

Scope and commencement 

The SWM Rules came into force on 8 April 
2016, after publication in the Gazette. These 
rules apply to every urban local body (ULB), 
census town, railway facility, airport, defence 
area, special economic zone (SEZ), religious or 
pilgrimage site, and all domestic, institutional, 
and commercial waste generators. Waste streams 
already governed by separate rules, such as bio-
medical and electronic waste, are excluded from 
this scope (Choudhury et al., 2024). Among the 
various types of municipal waste, electronic 
waste presents unique ecological threats due to 
the presence of heavy metals and persistent or-
ganic pollutants (Bhardwaj et al., 2024; Bhardwaj 
et al., 2025a; Bhardwaj et al., 2025b; Bajpai et 
al., 2025; Chowdhury et al., 2025). These com-
ponents have been shown to disrupt biodiversity 
and pose significant risks to wildlife (Choudhary 
et al., 2025b). Integrating these aspects into LCA 
allows for a more comprehensive assessment of 
environmental consequences.

Segregation and point‑of‑generations duties 

The table below depicts the key responsi-
bilities assigned to different categories of waste 
generators under the SWM Rules, 2016. It details 
who is responsible, the timeline, and the corre-
sponding rules. This provides a clear and concise 

Table 1. Duties of waste generators
Duty‑holder Quantified duty Timeline/trigger Rule References

All generators
Keep waste in 3 separate bins (bio, 
dry, domestic‑hazardous); never 
dump/burn; pay user fee

Continuous 4 (1) (a–d)
(Ministry of Environment, 
Forest and Climate 
Change, 2016a)

Events ≥ 100 persons Intimate ULB ≥ 3 working‑days in 
advance & ensure on‑site segregation Per event 4 (4)

(Ministry of Environment, 
Forest and Climate 
Change, 2016b)

Street vendors Maintain own container & hand over 
daily Continuous 4 (5)

(Ministry of Environment, 
Forest and Climate 
Change, 2016c)

Large generators—
RWAs, markets, gated 

communities > 5 000 m², 
hotels/restaurants

Segregate, recover recyclables, treat 
bio‑waste on site; partner with ULB

Within 1 year of 
8 Apr 2016 (i.e. 
by 8 Apr 2017)

4 (6–8)
(Ministry of Environment, 
Forest and Climate 
Change, 2016d)
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view of compliance expectations for each duty-
holder (Table 1).

Governance architecture and stakeholder 
responsibilities under the SWM rules, 2016

The table below presents an overview of the 
multi-tiered governance framework and market-
linked responsibilities under the SWM Rules, 
2016. It captures the statutory duties of key actors 
from government bodies to private sector stake-
holders, along with clear timelines and measur-
able targets. This table shows the coordinated 
effort required across administrative levels and 
industries to ensure effective waste management. 
It underscores institutional accountability and the 
shared societal obligation to protect public health 
and the environment (Table 2).

Enforcement framework

The SWM Rules, 2016, derive authority 
from the Environment (Protection) Act, 1986. 
Non-compliance may lead to penalties, includ-
ing imprisonment of up to five years, fines, 
and continuing penalties for ongoing viola-
tions. Many states also strengthen enforcement 
by empowering local bodies to levy spot fines 
through municipal bylaws, as permitted under 

Rule 15(zf), encouraging accountability and 
sustained public cooperation.

Fuzzy operation

Fuzzy logic has been recognised as a highly 
effective approach for SWM due to its ability to 
handle uncertainties and provide a quantitative 
framework for decision-making. The fuzzy con-
troller operates based on predefined rules, allow-
ing it to evaluate multiple factors and choose the 
best option for waste processing. Studies have 
shown that fuzzy logic systems can improve the 
efficiency and accuracy of waste management 
practices by dealing with the variability in waste 
characteristics and generation rates (Giel and Ki-
erzkowski, 2021).

Fuzzy set theory

Fuzzy set theory is a mathematical frame-
work for dealing with uncertainty and imprecision, 
which is especially useful in complex systems such 
as waste management. Unlike classical set theory, 
where an element belongs to a set or does not, 
fuzzy set theory allows for degrees of membership. 
It is a powerful tool for modelling real-world sce-
narios where data is often imprecise or uncertain.

Table 2. Roles, responsibilities, and timelines under the solid waste management (SWM) rules, 2016

Level / entity Statute 
hook References Chair / lead Time‑bound / quantitative duties

State Urban Development 
Department Rule 11

(Ministry of Environment, 
Forest and Climate 
Change, 2016e)

Principal UD 
Secretary

Draft state SWM policy & identify land within 
1 year; reserve space in master plans; 5% 
plot in SEZ/industrial parks for recycling

District Magistrate / 
Collector Rule 12

(Ministry of Environment, 
Forest and Climate 
Change, 2016f)

DM / DC Allot land for waste processing within 1 year; 
review ULB performance quarterly

Central Pollution Control 
Board (CPCB) Rule 14

(Ministry of Environment, 
Forest and Climate 
Change, 2016h)

Member‑
Secretary

Review standards annually; set norms for 
new tech within 6 months; publish national 
SWM status report annually

Local Authorities / Village 
Panchayats Rule 15

(Ministry of Environment, 
Forest and Climate 
Change, 2016g)

Municipal 
Chair / 

Sarpanch

Prepare SWM plan within 6 months of state 
policy; door‑to‑door segregated collection; 1 
drop‑off/20 km²; bin color code (green/white/
black); bye‑laws within 1 year; levy user fee

State PCB / PCC Rule 16
(Ministry of Environment, 
Forest and Climate 
Change, 2016i)

Chair, SPCB
Authorise facilities within 60 days; inspect at 
least once a year; regulate inter‑state waste 
flows

Brand Owners / Sanitary 
Product Manufacturers Rule 17

(Ministry of Environment, 
Forest and Climate 
Change, 2016j)

—
Finance collection of non‑biodegradable 
packaging; sanitary pad makers to supply a 
disposal pouch

Industrial Units (within 
100 km of RDF/WtE) Rule 18

(Ministry of Environment, 
Forest and Climate 
Change, 2016k)

— Use ≥ 5% RDF fuel within 6 months (by Oct 
2016) if within 100 km of RDF/WtE facility

All Waste Generators (by 
calorific value) Rule 21

(Ministry of Environment, 
Forest and Climate 
Change, 2016l)

— Waste with ≥ 1.500 kcal/kg must be used for 
WtE or co‑processing; cannot go to landfill
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Fuzzy number in triangle (FNT)

A fuzzy number in a triangle (FNT) is a simple 
yet effective way to represent fuzzy numbers us-
ing three parameters: the lowest possible value 
(k), the most probable value (m), and the high-
est possible value (u). The membership function 
µ(p|M) defines how likely a value p is to be part of 
the fuzzy number. The primary aim of the Fuzzy 
set is to indicate how much a value interferes with 
a specific set value. However, a value for a par-
ticular set can be noticed in a typical set. This is a 
benefit of using a fuzzy-based controller in a waste 
management system for precise output. Zadeh’s 
“Fuzzy set theory” (Mallick, 2021) is a modeling 
approach that simulates a complicated system that 
is difficult to characterize using clear and con-
cise numbers. Modeling governing dependent on 
vague and equivocal context, i.e., the preferences 
of control, was a frequent application of the fuzzy 
set theory. Fuzzy logic is an incredible tool when 
making sense of ambiguity, imprecision, or a lack 
of clarity (Balezentiene et al., 2013). In spatial 
planning, fuzzy logic is employed to judge wheth-
er to implement a contiguous object on the map 
as a variable. In classical set theory, often called 
crisp theory, an object is a set member, or it is not. 
“A feature object could be used as a membership 
value ranging from 0 to 1, which means that the 
degree of the membership function is indicated by 
fuzzy set theory.” Figure 3 depicts a FNT M as 
specified below. “There are two ways to express 
FNTs: the lowest and highest possible values (e.g. 
(k, m, u)), as well as a linear representation on the 
right and left sides (Equation 1) of the FNT.”
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where: k, m, and you are lesser, middle, and up-
per boundaries are of FNT. Any given 
component in the domain p may fit into 
the fuzzy number A in a gradation defined 
by μ, the membership function. Sugges-
tive of a relationship between crisp and 
fuzzy are numerical values. This equation 
displays approximate members of every 
membership level depending on their 
right and left representations (Kahraman 
and Kaya, 2010). 
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where: M fuzzy number left and right sides are 
k(y) and r(y), respectively.

LIFE CYCLE ASSESSMENT (LCA)

The city of Delhi’s current waste manage-
ment system was examined using the LCA tech-
nique as part of this investigation. It is a tool that 
has been shown to give valuable insights into 
identifying viable outputs for controlling solid 
waste through its comprehensive viewpoint in 
measuring environmental consequences (Laurent 
et al., 2014). When managing solid waste, the old 

Figure 3. Description of (FNT) “M”
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cradle-to-grave technique must be changed to 
gate-to-cradle or gate–to–grave, based on wheth-
er regeneration or dumping operations are being 
evaluated. In the case of waste management, it 
could be trash or reused as a substitute for virgin 
resources in subsequent life cycles. Substitution 
refers to replacing primary-source materials with 
secondary-source materials acquired via recov-
ery and recycling. The original production’s en-
vironmental duties are ascribed to the recycling 
system, while the energy and additional materials 
required for recycling are the system’s responsi-
bility. Numerous studies have utilised LCA as a 
technique for analysing waste management sys-
tems. This method allows for deep evaluations of 
the system’s performance, comparisons to other 
systems, and detection of potential system en-
hancements. The seven (7) different integrated 
management systems have been highlighted in 
this present study. It has been observed that land-
fills with bio-drying and incineration of leftovers 
in mechanical and biological treatment (MBT) 
systems with no energy recovery from landfill 
gas are more environmentally friendly than aero-
bic MBT (Koci and Trecakova, 2011). Mechani-
cal pre-treatment is an effective method of recov-
ering a percentage of recyclables from mixed or 
residual garbage (Di Maria et al., 2013). 

Similarly, the creation of raw fertilizer from 
the organic portion of MST reveals favourable 
statistics when contrasted with the various alter-
native management choices (Ferreira et al., 2017). 
Recycling plastic and paper can be helpful in 
terms of energy-related GHG emissions, accord-
ing to the author, who believes it should be pro-
moted more. In addition, they concluded that in-
cineration is preferable to landfilling (Choudhury 
and Roy, 2025). The combustible use of biomass 
may help decrease emissions of GHGs (Ferreira 
et al., 2017). After examining two distinct waste 
packaging systems, the author concluded that the 
recycling scenario is the one that is better for the 
environment. Otoma and Diaz (2017) analysed 
GHG emissions for six distinct conceivable cases 
and determined that the biogas production scenar-
io resulted in the lowest emissions. Abduli et al. 
(2011) compared two approaches to waste man-
agement, including separate collection, compost-
ing of biowaste, and landfilling of waste (Mondal 
et al., 2023). The authors highlighted that the 
most advantageous choice regarding the waste hi-
erarchy was not always beneficial with LCA. Ad-
ditionally, the authors indicated that with energy 

recovery by trash, co-incineration correlates with 
the superior energy performance of dedicated in-
cineration and could be favoured over construct-
ing a new incinerator. The author concluded that 
the draw-breathe biowaste management system 
in the Asti area, which is focused on composting, 
has more advantages than landfilling (Assamoi 
and Lawryshyn, 2012). Even though the cost of 
treatment is more significant, it has been proven 
that incineration is better for the environment 
than landfilling (Vais et al., 2023). An LCA was 
performed on the various management strategies 
at both the urban and the rural levels. The authors 
examined various disposal and treatment options 
and recycling for a certain quantity of garbage. 
The most important takeaways from this research 
were that recycling has a beneficial impact and 
that incineration and anaerobic digestion play 
positive roles. The review is supported by each 
one of these findings. Because it enables practi-
tioners to analyse many system features from the 
point of view of the environment, LCA is a valu-
able technique for designing, implementing, and 
improving municipal waste (Hadzic et al., 2018).

SOLID WASTE MANAGEMENT

The inputs are required to calculate this sys-
tem’s reference value using fuzzy logic. One of 
the most significant consumers of plastic is Chi-
na, whereas India ranks twelfth and generates 
three percent of the world’s plastic garbage. Even 
though India generates 3% of all plastic garbage, 
unmanaged plastic waste accounts for about 1.9% 
of the entire value. China’s polymer waste mis-
management rate is around 87 percent, lower 
than India’s (Kibria et al., 2023). Delhi generates 
around 8300 tons/day of MSW, while Mumbai 
produces 7000 tons/day of MSW, which is around 
18% higher for Delhi than Mumbai (Sathyamur-
thy, 2018; Randhawa et al., 2020). The reference 
values are used in this work to simulate Fuzzy 
logic-based polymer waste management (PWM). 
The not-managed trash in the United States is 
around 2%, with unmanaged polymer waste ac-
counting for just 0.9%. This data evaluation 
of different nations shows that PWM is critical 
for hygiene and wellness. Other studies suggest 
that waste management accounts for 6.9% of the 
worldwide gross domestic product (GDP). Ad-
ditionally, its applications with plant sludges on 
anaerobic solid waste degradation in simulated 
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landfill reactors are now under investigation, and 
cement waste forms (Idachaba et al., 2004). Table 
3 shows a brief review of the evaluation of SWM 
indices in previous research documents concern-
ing their regions. Figure 4 shows the pictorial rep-
resentations of the reasons that caused solid waste 
(Abdel-Shafy and Mansour, 2018).

This section summarizes the previous search 
that has been done about the MSW of SWM us-
ing fuzzy logic. Mallick (2021) suggested an in-
tegrated framework emphasizing organizing the 
suitability site map decision-making process for 
landfills. That might be established using the 
correct data collection, criteria weighting, and 
normalization techniques. The GIS-based fuzzy 
technique was used to choose a landfill site for 

a location to further understand the mechanisms 
influencing landfill site appropriateness. These 
notions were built using remote sensing (RS) 
and traditional data. This approach and its results 
could help hydrogeologists, regional planners, 
and engineers choose a landfill.

Yang et al. (2021) suggested an AI technique 
to accurately anticipate MSW energy recovery gas 
yield accurately. A deep neural network (DNN) 
was used to forecast gas yield in MSW. The 
moth-flame optimization-deep neural network 
(MFO-DNN) model is then used to optimize and 
increase the DNN model’s accuracy. Both models 
accurately forecast gas yield. MFO-DNN outper-
formed DNN. Using MFO-DNN, toxic gases can 
be carefully managed and optimized to get the gas 

Figure 4. Structure of solid waste causes

Table 3. Chronological review of global MSW evaluation studies supporting Fuzzy-LCA integration (2010–2025)
S. No. Author(s) Evaluation index/method Region of study

1 Dawar et al., 2025 AI/ML‑based decision tools Global (Review of worldwide applications)

2 Nurzhan et al., 2025 Life‑cycle assessment (LCA) Global (Case studies from various 
countries)

3 Zhang et al., 2024 Policy & infrastructure challenges Asia & Africa (Developing cities)

4 Maalouf and Mavropoulos, 2023 Waste generation data & projections Global (Cross‑country data)

5 Ibikunle et al., 2021 Solid waste to energy conversion Nigeria

6 Kawai and Tasaki, 2016 Per‑capita waste generation index Global (Focus on developing countries)

7 Iqbal et al., 2020 Life‑cycle assessment (LCA) Global (Case studies from various 
countries)

8 Kokkinos et al., 2019 Processing of waste Thessaly, Greece

9 Godwin, 2019 Treatment technologies in solid waste Global

10 Kaza et al., 2018 Waste generation & disposal metrics Global (217 countries)

11 Sathyamurthy, 2018 Polymer waste management (PWM) Comparison between India and China

12 Estay‑Ossandon et al., 2018 Energy recovery techniques from 
waste

Canary Islands archipelago, Spanish 
region

13 Olaniran et al., 2017 Greenhouse gas (GHG) emission Nigeria

14 Khan and Samadder, 2014 GIS‑based siting & routing India (case context)

15 Guerrero et al., 2013 Sector challenges (Multi‑criteria) Latin America, Africa, Asia

16 Hoornweg et al., 2013 Waste generation, GHG Emissions Global (152 countries)

17 Pires et al., 2011 Systems analysis (LCA, GIS, etc.) Europe (EU 27)

18 Su et al., 2010 Waste reduction and treatment Taiwan
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field from MSW for use in the treatment of waste 
facilities, hence reducing the damage done to the 
surrounding environment.

An analytical hierarchy process (AHP) based 
framework was recommended for use in this re-
search. Multiple ML methods gradient boosting 
tree (GBT), decision tree (DT), and support vec-
tor machines (SVMs) were used to determine 
the best site for WtE facilities. Eleven thematic 
geospatial raster layers included social, environ-
mental, economic, and land cover characteristics. 
Sharjah, UAE, with a population of 1.5 million, 
used the recommended structure. Gaussian dis-
persion modeling was developed for WtE air 
pollution emissions. GBT, DT, and SVM have 
respective accuracy rates of 94.6, 93.9, and 91.8 
percent. The AHP consistency assessment found 
a 0.0344 total criterion consistency index and 
0.019 ratios. 16.6% of Sharjah was deemed very 
appropriate (Al-Ruzouq et al., 2022).

Michael et al. (2021) and Makonyo and Msa-
bi (2022) suggested GIS-based multi-criteria de-
cision analysis to choose landfill locations. The 
AHP was used to integrate fifteen criteria using 
the AHP. 41,177 hectares (14.7%) of the area 
studied is exceptionally suitable for landfills. 
30% of the region is appropriate, 30.2% is suit-
able, and 19.1% is less suitable. 16,683 hectares 
(6%) is inappropriate. Eleven dump sites from 
the highly suitable region were prioritized using 
AHP. Geology, hydrogeology, geophysics, and 
environment experts validated the locations’ ap-
propriateness. Developing nations may use these 
strategies to find acceptable waste locations to re-
duce health and environmental damage.

Kumar et al. (2020) suggested the outlines as 
a time series model for predicting monthly strong 
trash generation in Noida, India, using artificial 
neural network (ANN) and an autoregressive ap-
proach. From 2012 to 2016, monthly municipal 
waste perceptions were collected. Better areas 
have strong waste characteristics. The accurate 
projection of MSW generation is essential nowa-
days. Predictions need MSW data. The 60-month 
data collection comprises forty-two training, nine 
testing, and nine validation sets. Finally, neural 
network architecture is improved. The suggested 
model validates the lowest mean square error of 
0.0004, the lowest root mean square error (RMSE) 
of 0.0203, and the highest regression coefficient of 
0.8123 for performance metrics. The ANN model 
is supposed to deliver exact prophetic results based 
on the assumption of these execution parameters.

A comprehensive framework for assessing 
the incineration power plant’s performance from 
a reprobate categorization standpoint was sug-
gested (Wu et al., 2020). The Hesitant Fuzzy Lin-
guistic Term Sets (HFLTS) check all assessment 
information. The index weights are then calcu-
lated using the AHP and entropy methods, elimi-
nating the need for subjective weight judgments. 
Third, fuzzy synthetic evaluation (FSE) calculates 
the outcome based on fuzzy relation synthesis. A 
case study assesses the framework’s applicability. 
The article offers economic, environmental, and 
social solutions to increase incinerator benefits. 
This article provides a theoretical reference for 
future incineration power plant development and 
increases the benefit assessment literature.

Soni et al. (2019) suggested Discrete Wavelet 
Theory–Artificial Neural Network (DWT-ANN), 
ANN, discrete wavelet theory–adaptive neuro-
fuzzy inference system (DWT-ANFIS), genetic 
algorithm–artificial neural network (GA-ANN), 
and genetic algorithm–artificial neuro-fuzzy in-
ference system (GA-ANFIS), as well as compared 
them to see how well they could predict how 
much trash would be made. New Delhi, India, is 
used to illustrate many models. The models were 
compared based on their Root Mean Squared and 
the index of agreement (IA) values. The Genetic 
Algorithm and ANN hybrid model provides the 
lowest RMSE, the most considerable IA value, 
and the highest R2 value.

Soni et al. (2019) describe using scientific 
models, environmental challenges related to 
municipal garbage disposal. The investigation’s 
repercussions and municipal garbage disposal 
difficulties are described. Waste disposal chal-
lenges are explained with context. Optimization 
modeling, multi-objective approach, and ANNs 
are mentioned in waste management. Single-ob-
jective optimization models yielded a fresh opti-
mal solution, but multi-objective difficulties led 
to compromises. In addition, the investigation re-
vealed that model-based ANN has been used ex-
tensively to work with an appropriate prediction 
for the rate of production of solid waste.

Sebastian et al. (2019) suggested I-Index, as 
it is a complicated multi-criteria decision-mak-
ing (MCDM) issue, which consists of the views 
of over two hundred experts, gathered at vari-
ous phases of its creation. The AHP was used to 
compute the relative weighting of the qualities, 
and rating curves were utilized to standard-
ize. The invulnerability MSW was produced 
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in three economic groupings; the I-Index val-
ues were 72.38, 62.08, and 41.94, respectively. 
A high number suggests more invulnerability 
since the I-Index is an increasing scale index. 
This proves how differences in MSW content 
among economies might alter how MSW can 
be incinerated.

Singh et al. (2019) developed a mixed-integer 
linear optimization model, which considered the 
unpredictability of waste volume and the compe-
tence of the waste treatment plant. MSW manage-
ment was designed to lower the overall cost of 
SWM, the complete risk of owning environmen-
tal cleanup provisions, and the amount of trash 
at the source. These optimal locations of trash 
sources and centers were found using a popula-
tion-weighted vehicle routing (PWVR) optimiza-
tion model. Single, multi-objective optimization 
demonstrated that the overall charge fluctuates to 
a few degrees with the variation of trash amount 
and quality in incinerators. Three scenarios were 
explored. Uncertainty analysis found that the 
waste amount has a more significant impact on 

waste management planning than treatment/
disposal facility capacity. Case 2’s overall cost 
depended more on facilities than trash volume. 
Only Cases 2 and 3 minimize environmental risk 
and waste volume. Single-objective optimization 
costs less than multi-objective and goal program-
ming. Table 4 shows the comparative analysis of 
the previous research documents in the field of 
MSW of SWM using fuzzy logic.

COMPARATIVE ANALYSIS

The strategies presented in this article showed 
that waste material might be effectively trans-
formed into a functional form. Lessons from 
community-based waste bin systems in rural 
Ukrainian regions (Bredun et al., 2024) under-
score the importance of inclusive, bottom-up 
waste management practices. Similar participa-
tory models could be adapted to metro cities by 
combining local stakeholder engagement with 
intelligent fuzzy logic frameworks for system 

Table 4. Comparative analysis of literature review (2019 to 2025)
Authors Method used Area Suggested outcome Future scope

Adekoya and 
Ogbolumani, 2025

SVM & ANN + IoT smart 
bins & route optimization

Waste collection 
optimization (47 urban 
sites)

89% accuracy; 35% fewer 
trips; 42% fuel savings

Expand to smart city 
frameworks with real‑
time analytics

Zhao et al., 2024 BP Neural Network MSW prediction 
(China)

R² = 0.969–0.971; 93.8% 
accuracy in Shandong

Extend to other urban 
regions for forecasting

Desta et al., 2023 GIS, Remote Sensing, 
AHP

Landfill site suitability 
(Ethiopia)

GIS and AHP identified 
high‑suitability zones

Useful for future landfill 
planning in Ethiopian 
towns

Al‑Ruzouq et al., 
2022 GBT, DT, and SVMs Energy waste

GBT, DT, and SVM 
achieved 94.6%, 93.9%, 
and 91.8% accuracy

Identified 16.6% of 
Sharjah as a highly 
appropriate area

Makonyo and 
Msabi, 2022 AHP Landfill sites

41,177 ha (14.7%) of the 
study area is suitable for 
landfills

Applicable in developing 
nations for health and 
environmental safety

Mallick, 2021 GIS‑based fuzzy‑AHP‑
MCDA Landfill suitability

Classification between 
excellent, good, and bad 
zones

Guide for future landfill 
site selection

Yang et al., 2021 Gas yield, MFO‑DNN Energy recovery
DNN and MFO‑DNN 
accurately predicted gas 
yield

Reduces the 
environmental impact of 
treatment facilities

Kumar et al., 2020 RMSE, ANN MSW prediction 
(NOIDA, India)

MSE = 0.0004; RMSE = 
0.0203; R = 0.8123

Supports ANN for future 
solid waste forecasting

Wu et al., 2020 HFLTS, AHP, FSE
Incinerator 
performance 
classification

AHP and entropy reduced 
bias; FSE synthesized the 
index

Suggests revising 
performance indices for 
broader impacts

Soni et al., 2019 GA‑ANN, RMSE Garbage prediction GA‑ANN is most accurate 
in RMSE, IA, and R².

Promotes the use of 
hybrid ANN models

Sebastian et al., 
2019 MCDM, AHP I‑Index formulation

I‑Index values: 72.38, 
62.68, and 41.94 for three 
countries

Recommend 
standardizing the 
I‑Index methodology

Singh et al., 2019 PWVR
Waste quantity & 
facility capacity 
planning

Costs varied with waste 
volume and incineration 
quality

Encourages multi‑
objective optimization 
modeling
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optimization. The most common methods are 
recycling Plastic, converting organic waste into 
biofertilizer, and the greenhouse gases generated 
in the landfill due to anaerobic digestion, consist-
ing of methane, which can be used as a fuel for 
cooking as well as for energy generation (Hajam 
et al., 2023). The most crucial factor in choosing a 
method is waste. Waste with a high percentage of 
biodegradable and organic material is used to pro-
duce biogas and manure. Selecting landfills in the 
most appropriate locations may be accomplished 
most efficiently using GIS and other technologies. 
This study discusses GIS-enabled techniques for 
locating the ideal dump location. GIS and AHP 
integration offer a powerful multi-index assess-
ment tool that uses spatial analytic approaches to 
choose the best dumping location. In one study, 
Resourcesat LISS-III and SENTINEL -2 mul-
tispectral satellite data is used to identify zones 
in the Delhi area based on various parameters 
groundwater table, geomorphology data, litho-
logical data, and soil data and found most suitable 
zone in Delhi is Saket District in the south zone 
with overall only 0.27% of the area was found 
ideal in Delhi (Tiwari et al., 2022). While several 
aspects are considered when selecting a location, 
the fuzzy set has a robust ranking potential. Qual-
itative data can also be represented and presented 
in a variety of membership degrees. The bulk of 
SWM’s resources are devoted to collecting sol-
id trash. After that, it is necessary to get public 
support for a landfill site that meets environmen-
tal standards. This article also fully describes a 
public acceptability study for proposed dump 
sites. Numerous forecasting and analysis projects 
aimed at predicting future solid waste generation 
in Indian cities and rural areas, including Mumbai 
and Delhi (Sharma and Mathur, 2020), Mumbai 
(Sathyakumar et al., 2020), Kolkata (Soren et al., 
2023), and Chennai (Partheeban et al., 2020).

CONCLUSIONS

The future of MSWM in metro cities lies in 
integrating fuzzy logic with advanced technolo-
gies such as AI, ML, and geospatial analytics. 
These hybrid approaches can enhance predic-
tion accuracy, enable real-time decision-making, 
and support adaptive waste management strat-
egies aligned with dynamic urban growth and 
regulatory shifts. Incorporating IoT and digital 
twins will improve monitoring while embedding 

socio-economic and behavioral factors into deci-
sion models, ensuring greater public acceptance 
and policy relevance. Establishing standardized, 
open-access waste data platforms will be crucial 
for scaling and replicating these intelligent sys-
tems across diverse urban environments, foster-
ing more sustainable and resilient waste man-
agement frameworks.

This study developed an integrated decision-
support framework by combining fuzzy logic 
with life cycle assessment to evaluate sustain-
able MSWM strategies in a metropolitan con-
text, using Delhi as a representative case. By 
incorporating uncertainty in waste composition, 
treatment efficiency, and emission factors, the 
fuzzy LCA model enabled a realistic assessment 
of environmental and operational outcomes 
across seven distinct waste treatment scenarios. 
The integration of fuzzy logic allowed for dy-
namic scenario ranking under variable condi-
tions using a fuzzy-TOPSIS approach. Results 
indicated that hybrid systems involving MBT 
with energy recovery and anaerobic digestion 
provided the most effective greenhouse gas re-
duction, energy recovery, and landfill diversion 
outcomes. These findings highlight the value 
of adaptable decision-making tools that reflect 
real-world uncertainty. The approach addresses 
a significant gap in current MSWM research by 
providing an uncertainty-aware framework that 
moves beyond deterministic modeling. It offers 
a multidimensional sustainability assessment, 
integrating technical, environmental, and eco-
nomic criteria. By embedding fuzzy logic within 
LCA, the study presents a novel contribution 
that supports more informed, resilient waste 
management planning. The findings can assist 
policymakers and urban planners in developing 
sustainable, data-resilient strategies tailored to 
the complexities of rapidly urbanizing cities.
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