Research on Thermal Runaway of Mechanically Damaged Li-Ion Batteries and Its Stopping by Excess Water

Submitted: 2025-04-07

Accepted: 2025-04-22

Online: 2025-11-06

MAIBORODA Artem^{1,a*}, HAPON Yuliana^{1,b}, TREGUBOV Dmytro^{1,c} and NUIANZIN Vitalii^{1,d}

¹National University of Civil Defence of Ukraine, 8, Onoprienka str., Cherkasy, Ukraine, 18034 ^amaiboroda_artem@nuczu.edu.ua, ^bhapon_yuliana@nuczu.edu.ua, ^ctrehubov_dmytro@nuczu.edu.ua, ^dnuianzin_vitalii @nuczu.edu.ua

Keywords: battery, lithium, damage, self-heating, thermal runaway, ignition, temperature, fire, water, cooling, reactions.

Abstract. The construction, operating principles, and Li-ion battery thermal runaway mechanisms were analyzed. The external mechanical damage to a Li-ion battery with the uncontrolled thermal runaway development was investigated. The battery self-heating temperature regime was determined. A possible reactions set leading to intense materials self-heating and decomposition was considered. The battery self-heating stopping by immersing it in a container with a water excess relative to the stoichiometric amount for the lithium metal maximum mass that can accumulate was investigated. The change in resulting aqueous solution pH was measured, and the hydrogen release was also recorded. Reaction completion time dependences was established. The water required amount to absorb the heat that could be released during the reaction was calculated, which correlated with the experimental data. Possible measures to Li-ion batteries prevent and stop the burning were considered.

1 Introduction

The modern concept of use developing of the various devices, equipment, machines and mechanisms, the requirements for their autonomy and operation stability, the possibility of the temporary accumulation of the periodic processes energy as the basis of electric power industry some branches have led to the battery systems widespread use. These systems are required to be lightweight, compact, efficient, fire, chemical and environmental safe. The most efficient and developed batteries currently are Li-ion. Their disadvantage is tendency to the thermal runaway (self-heating) under certain conditions, which poses a fire starting risk. World statistics show cases of their catching fire both during use and during storage, which can initiate large-scale fires. In 2017, a backup battery caught fire at a power plant near Brussels, producing a toxic smoke large amount. In 2019, a lithium metal abnormal deposit in the battery caused a cascading fire at Arizona Public Service's Battery Storage System. By the time firefighters arrived, an gases explosive concentration of had already been reached in the building, resulting in a massive explosion when the door was opened. In 2024, several batteries exploded in a warehouse in Seoul, killing 22 people and destroying buildings; in the same year, a fire broke out in a warehouse at the SNAM processing plant (France) and burned 900 tons of lithium batteries. Therefore, modern scientific developments are aimed at reducing the thermal runaway risk, developing cooling systems for such batteries in stationary and emergency operating modes, and predicting the initiating fires possibility. The latter involves studying options for individual batteries thermal runaway, their ignition cases and the large-scale fires development. This paper focuses on the development stages analysis of the damaged battery thermal runaway.

2 Literature Review

The thermal runaway phenomenon has been known since the alkaline batteries invention and occurs during charging. In emergency situations, electrolyte lack or its aging, battery mechanical damage, charging voltage exceeding, continued charging in a charged state, heat dissipation poor conditions,

absorb the heat generated, but the uniformity of its distribution is crucial for cooling efficiency. The results can be used to develop more effective fire protection measures for lithium-ion batteries. It is recommended to conduct the gas emissions early monitoring before the thermal runaway stage to enable timely response to batteries self-heating and self-ignition, and late monitoring for rapid response to fire at subsequent stages. Flaming can be stopped by spraying water, a inhibitor cloud, or non-flammable gas while simultaneously dousing the battery with water taken in excess. We propose to develop a system for purging the battery with non-flammable gases that do not react with lithium under fire conditions.

References

- [1] Y. Hapon, D. Tregubov, O. Tarakhno, V. Deineka, Technology of Safe Galvanochemical Process of Strong Platings Forming Using Ternary Alloy, Materials Science Forum, **1006** (2020) 233–238.
- [2] A. Sincheskul, H.Pancheva, V. Loboichenko, S. Avina, O. Khrystych, A. Pilipenko, Design of the modified oxide-nickel electrode with improved electrical characteristics. Eastern-European Journal of Enterprise Technologies, 5/6(89) (2017) 23–28.
- [3] L. Lisitsyna, I. Tupitsyna, L. Trefilova, Spectral and kinetic characteristics of the luminescence center in LiF-WO3 and ZnWO4 crystals, IOP Conference Series: Materials Science and Engineering, 81/1 (2015). 012024.
- [4] V. Balaram, M. Santosh, M. Satyanarayanan, N. Srinivas, H. Gupta, Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geoscience Frontiers. **15** (2024) 101868.
- [5] M. Hannan, A. Al-Shetwi, R. Begum, P. Ker, S. Rahman, M. Mansor, M. Mia, K. Muttaqi, Z. Dong, Impact assessment of battery energy storage systems towards achieving sustainable development goals, Journal of Energy Storage, **42** (2021) 103040,
- [6] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, **18/5** (2015) 252–264.
- [7] Yu. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Zh. Deng, J. Xiao, Lithium and lithium ion batteries for applications in microelectronic devices: A review, Journal of Power Sources, **286** (2015) 330–345.
- [8] Ch. Henriksen, J. K. Mathiesen, D. B. Ravnsb, Improving capacity and rate capability of Liion cathode materials through ball milling and carbon coating Best practice for research purposes, Solid State Ionics, **344** (2020) 115152.
- [9] X. Ren, Y Zhang., M. Engelhard., Q. Li, J. Zhang, W. Xu, Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF and Cyclic Carbonate Additives, ACS Energy Letters, 3/1 (2017) 14–19.
- [10] D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova, Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure, Solid State Phenomena, **334** (2022) 124–130.
- [11] I. Glassman, R. Yetter, Combustion, London, Elsevier, 2014.
- [12] D. Tregubov, I. Dadashov, V. Nuianzin, O. Khrystych, N. Minska, Relationship Between Properties of Floating Systems and Flammable Liquids in the Stopping Their Burning Technology, Key Engineering Materials, **954** (2023) 145–155.
- [13] Zh. Yu, H. Wang, X. Kong, W. Huang, Yu. Tsao, D. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Yu. Zheng, Ch. Amanchukwu, S. Hung, Y. Ma, E. Lomeli, J. Qin, Y. Cui, Zh. Bao, Molecular design for electrolyte solvents enabling energydense and long-cycling lithium metal batteries, Nature Energy, **5** (2020) 1–8.

- [14] Ch. Fu, V. Venturi, J. Kim, Z. Ahmad, A. Ells, V. Viswanathan, B. Helms, Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries, Nature Materials, 19(7) (2020) 758–766.
- [15] O. Willstrand, M. Pushp, H. Ingason, D. Brandell, Uncertainties in the use of oxygen consumption calorimetry for heat release measurements in lithium-ion battery fires, Fire Safety Journal, **143** (2024) 104078.
- [16] D. Tregubov, M. Chyrkina-Kharlamova, Y. Hapon, Y. Zmaha, Peroxide Conditions Modeling for the Combustion Occurrence, Defect and Diffusion Forum, **438** (2025) 111–121.
- [17] A. Barowy, The Science of Fire and Explosion Hazards from Lithium-Ion Batteries. Evanston, USA: Fire Safety Research Institute, 2023.
- [18] D. Tregubov, D. Miroshnichenko, M. Ulanovskij, Thermomechanochemical evaluation of quality of coke, Koks i Khimiya, **11** (2004) 14–19.
- [19] IEC 62133-2:2017+A1:2021. Specifies requirements and tests for the safe operation of portable sealed secondary lithium cells and batteries containing non-acid electrolyte, under intended use and reasonabl. International standard. 2021.
- [20] B. Pospelov, E. Rybka, V. Togobytska, R. Meleshchenko, Y. Danchenko, T. Butenko, I. Volkov, O. Gafurov, V. Yevsieiev, Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10(100) (2019).22–29.
- [21] V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, A. Rud, K. Karpets, Y. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations, Eastern-European Journal of Enterprise Technologies, **6(10)** (2020) 14–22.
- [22] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, S. Gornostal, Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials, Eastern-European Journal of Enterprise Technologies, **5/10** (2018) 25–30.
- [23] B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises, Eastern-European Journal of Enterprise Technologies, 6/10(90) (2017) 50–56.
- [24] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finely dispersed water, Eastern-European Journal of Enterprise Technologies, 2/10(92) (2018) 38–43.
- [25] D. Tregubov, O. Kireev, K. Kyazimov, L. Trefilova, S. Vavreniuk. A. Fire extinguishing development directions for liquids based on the foam glass primary layer, Problems of Emergency Situations, 2/40 2024) 165-184.
- [26] R. Pietukhov, A. Kireev, D. Tregubov, S. Hovalenkov, Experimental Study of the Insulating Properties of a Lightweight Material Based on Fast-Hardening Highly Resistant Foams in Relation to Vapors of Toxic Organic Fluids, Materials Science Forum, **1038** (2021) 374–382.
- [27] A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, **1006** (2020) 70–75.
- [28] V. Loboichenko, N. Leonova, V. Strelets, A. Morozov, R. Shevchenko, P. Kovalov, R. Ponomarenko, T. Kovalova, Comparative analysis of the influence of various dry powder fire extinguishing compositions on the aquatic environment, Water and Energy International, 62/7 (2019) 63–68.