LVIV STATE UNIVERSITY OF LIFE SAFETY

BIOLOGICAL, CHEMICAL, AND ENVIRONMENTAL THREATS DURING WAR

Proceedings of I International Scientific and Practical Conference

Biological, chemical, and environmental threats during war: proceedings of the I International Scientific and Practical Conference, Lviv, May 22, 2025. Lviv: LSULS, 2025 p., – 154 p.

EDITORIAL BOARD:

Vasyl Popovych Doctor of Technical Sciences, Professor, Vice-Rector for

Scientific Work at Lviv State University of Life Safety

Viktoria Serhiyenko Doctor of Medical Sciences, Professor, Vice-Rector for

Scientific Work at DNP "Lviv National Medical University

named after Danylo Halytskyi"

Nataliya Ivanchenko General Director of the State Institution "Lviv Regional Center

for Disease Control and Prevention of the Ministry of Health of Ukraine"

Yaroslav Ilchyshyn Candidate of Pedagogical Sciences, Head of the Research

Center at Lviv State University of Life Safety

Yuriy Kopystynskyi Candidate of Technical Sciences, Head of Doctoral and

Postdoctoral Studies at Lviv State University of Life Safety

Serhiy Yemelianenko Candidate of Technical Sciences, Senior Researcher, Deputy

Head of the Center - Head of the Department of Research Organization at the Research Center of Lviv State University of

Life Safety

Kateryna Stepova Candidate of Technical Sciences, Associate Professor, Senior

Researcher, Department of Research Organization, Research

Center, Lviv State University of Life Safety

Yaroslav Kyryliv Candidate of Technical Sciences, Principal Researcher, Leading

Researcher, Department of Research Organization, Research

Center, Lviv State University of Life Safety

Iryna Fediv PhD, Chief Researcher, Department of Research Organization,

Research Center, Lviv State University of Life Safety

Tetiana Skyba PhD student, Lviv State University of Life Safety

The collection is based on scientific materials from the I International Scientific and Practical Conference "Biological, Chemical, and Environmental Threats During War."

The materials presented in the collection are submitted in the authors' own editing and reflect their own scientific position. The authors are fully responsible for the accuracy of the facts, quotations, economic and statistical data, scientific terminology, proper names, and references cited.

CONTENTS

SECTION 1 BIOLOGICAL SAFETY AND PUBLIC HEALTH IN WARTIME

O. Bernadska, I. Sych FORENSIC GENOMICS IN THE INVESTIGATION OF	
BIOINCIDENTS: CURRENT CAPABILITIES AND	0
LIMITATIONS	9
I. Chaklosh, W. Kołodziej, K. Wac, A. Sveleba	
ASSESSMENT OF KNOWLEDGE, ATTITUDES, AND	
PREPAREDNESS OF NURSING AND EMERGENCY	
MEDICAL SERVICES STUDENTS TO COUNTERACT	
BIOLOGICAL THREATS	13
BIOLOGICAL THREATS	13
V. Laboyko	
ASSESSMENT OF WORKERS' HEALTH RISKS FROM	
AIR POLLUTION BY CHEMICAL SUBSTANCES	18
R. Lesyk, B. Hromovyk, O. Pankevych	
PHARMACEUTICAL WASTE MANAGEMENT	
IN THE CONTEXT OF THE EUROPEAN GREEN	
DEAL	22
S. Matysik	
THE QUALITY OF NUTRITION AMONG STUDENTS	
OF HIGHER EDUCATION IN CONTEMPORARY	
REALITIES	27

V.Mykhaylenko, V.Makhniuk, M. Blyzniuk,	
R. Havryliuk	
THE ROLE OF NON-FORMAL EDUCATION IN	
PROTECTING PUBLIC HEALTH IN THE POST-WAR	22
PERIOD	32
A. Sibirny, R. Sibirna	
BIOLOGICAL FACTORS OF THREATS TO HUMAN	
HEALTH AND LIFE DURING WAR	37
M. Velichko	
RUSSIA – A BIOLOGICAL THREAT TO THE	
GLOBAL COMMUNITY	41
SECTION 2	
CHEMICAL, RADIATION, AND ENVIRONMENTA	٨L
SAFETY DURING WAR AND TECHNOGENIC STR	ESS
H. Butsyak, O. Matsuska	
PROBLEMS AND PROSPECTS OF HOUSEHOLD	
WASTE DISPOSAL IN THE LVIV REGION	45
N. Ilkiv, E. Holianych	
LEGAL GUARANTEES OF ENVIRONMENTAL	
RIGHTS OF CITIZENS OF UKRAINE IN THE	
CONDITIONS OF MARTIAL LAW	49
D. Hryhorenko	
EXPERIENCE IN MONITORING RADIATION-	
HAZARDOUS SITES: LESSONS FOR ASSESSING	
THE IMPACT OF MILITARY ACTIVITIES ON THE	
GEOLOGICAL ENVIRONMENT	54

I. Kaluzhniak, Ya. Kyryliv	
FIRE HAZARDS AND TOXICOLOGICAL	
PROPERTIES OF VEGETABLE OILS	59
N. Kendzora	
THE BARRIER-FREE LANDSCAPING AS A WAY TO	
INCLUSIVE PUBLIC SPACE	65
O. Kolinkovskyi, T. Kolinkovska	
TOXICOLOGICAL ASPECTS OF THE INFLUENCE OF	
ROCKET FUEL ON THE ORGANISM	70
O. Kondratenko, V. Koloskov, H. Koloskova,	
O. Lytvynenko	
ENVIRONMETALLY FRENDLY STRUCTURE OF	
FIREFIGHTING AND EMERGENCY-RESCUE	
VEHICLE EXPLOITATION MODEL WITH	
RECIPROCATING ICE THAT OPERATES ON	
MIXTURE OF BIODIESEL AND PETROLEUM	
FUEL	75
O. Kondratenko, V. Koloskov, H. Koloskova,	
O. Lytvynenko	
JUSTIFICATION OF RATIONAL UNITS OF	
MONETARY EQUIVALENTS OF ECOLOGICAL	
SAFETY LEVEL INDICATORS OF FIREFIGHTING	
AND EMERGENCY-RESCUE VEHICLES	
EXPLOITATION PROCESS	79
LAI LOTTATION I ROCLSO	,,
U. Konyk, L. Kozak	
THE JOINED EFFECT OF FLUORIDE AND LOW	
DOSES OF RADIATION ON ENERGY METABOLISM	
AND MORPHOLOGIC CHARACTERISTICS OF LIVER	
TISSUES	83

I. Muts, Ya. Galadzhun, Z. Yaremko, H. Dmytriv	
FORMATION OF CHEMICAL SAFETY	
COMPETENCIES AMID CONTEMPORARY	
SECURITY CHALLENGES	87
V. Myroshkin	
FIRES AT OIL DEPOTS DUE TO SHELLING:	
ENVIRONMENTAL RISKS OF FOAM	
EXTINGUISHING OF FLAMMABLE	
LIQUIDS	92
V. Skrobala, O. Dulyba	
ANTI-EROSION EFFICIENCY OF PARK AND	
FOREST PARK PLANTATIONS IN THE CITY OF	
LVIV	96
T. Skyba, V. Popovych	
ASSESSMENT OF RADIATION BACKGROUND	
INDICATORS AT HOUSEHOLD WASTE LANDFILLS	
(UKRAINE)	100
Yu. Tkalich, S. Shevchenko, R. Novitskyi, H. Hapich	
MANAGEMENT APPROACHES TO SUSTAINABLE	
AGRICULTURE AND ENVIRONMENTAL SECURITY	
AMID CLIMATE CHANGE AND MILITARY	
CONFLICT	104
S. Verkhola, N. Hotsii, B. Ianyshyn	
UNDERLYING SURFACE AS A FACTOR OF	
INFLUENCE ON STRENGTHENING THE "HEAT	
ISLAND" EFFECT OF THE URBAN	
ENVIRONMENT	107

SECTION 3 SAFETY, RISK MANAGEMENT, AND EMERGENCY RESPONSE

V. Balaniuk, Yu. Kopystynskyi, N. Huzar,	
O. Garasymiuk, O. Girskyi, V. Pikus	
IMPACT OF ADDITIVES ON THE FIRE	
SUPPRESSION EFFICIENCY OF AEROSOL	
AGENTS	111
V. Balinskyy, R. Havryliuk, V. Hulevets	
METHODOLOGY FOR BACKWARD TRACING OF	
OIL SLICKS TO UNDERWATERSPILL	
SOURCES	115
P. Bilenchuk, O. Kravchuk	
STRATEGIC GUIDELINES FOR THE INNOVATIVE	
DEVELOPMENT OF CRITICAL THINKING TOOLS.	
COGNITION TOOLS, METHODS OF SPECIAL	
ANALYSIS OF DECISION-MAKING AND	
SITUATIONAL MANAGEMENT TECHNOLOGIES	
FOR RESPONDING TO CRISIS SITUATIONS IN TIME	
OF WAR	120
S. Burbela	
INTEGRATION OF MODERN TECHNOLOGIES	
(INNOVATIONS) INTO THE TRAINING OF BORDER	
UNIT OFFICERS FOR OPERATIONS IN CONDITIONS	
OF RADIOLOGICAL, CHEMICAL, AND BIOLOGICAL	
CONTAMINATION. IMPLEMENTATION OF NATO	
STANDARDS	126
O. Kovalchuk	
INFORMATION TECHNOLOGIES FOR	
FORECASTING "MAN-MADE" RISKS	130
I OILLOIDING MAN-MADL MONS	130

O. Kovalchuk	
INNOVATIVE SOLUTIONS FOR MANAGING	
TECHNOLOGICAL RISKS	135
VP. Parkhomenko, R. Parkhomenko	
USE OF MODERN EQUIPMENT FOR	
EXTINGUISHING ELECTRIC VEHICLES	140
L. Shostak, O. Nesen, T. Nahainyk, N. Kravchenko	
THE RELEVANCE OF FIRST AID TRAINING IN THE	
CONTEXT OF CIVILIAN PROTECTION DURING	
EMERGENCIES UNDER CONDITIONS OF MILITARY	
ACTIONS	145
O. Tkachyk, O. Synelnikov	
PROVISION OF MEDICAL ASSISTANCE TO	
VICTIMS IN CHEMICALLY CONTAMINATED	
ARFAS	149

UDC 504.064.4:621.431:389.14:528.088

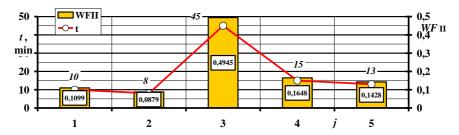
ENVIRONMETALLY FRENDLY STRUCTURE OF FIREFIGHTING AND EMERGENCY-RESCUE VEHICLE EXPLOITATION MODEL WITH RECIPROCATING ICE THAT OPERATES ON MIXTURE OF BIODIESEL AND PETROLEUM FUEL

- O. Kondratenko, DSc(Engineering), Professor, Head of the Department of Environmental Protection Technologies of the Scientific and Educational Institute of Management and Population Safety, National University of Civil Protection of Ukraine of SES of Ukraine,
 - V. Koloskov, CandSc(Engineering), Associate Professor, Professor of the Department of Environmental Protection Technologies of the Scientific and Educational Institute of Management and Population Safety, National University of Civil Protection of Ukraine of SES of Ukraine
- **H. Koloskova**, CandSc(Engineering), Associate Professor, Head of the Department of Structures and Designing of Rocket Technique of the Faculty of Rocket and Space Engineering, National Aerospace University «Kharkiv Aviation Institute» of MES of Ukraine
- O. Lytvynenko, CandSc(Philology), Associate Professor, Associate Professor of the Department of Language Training of the Scientific and Educational Institute of Management and Population Safety, National University of Civil Protection of Ukraine of SES of Ukraine

Ecological safety (ES) is a fundamental element of national security at both global and local levels. Its evaluation, particularly through complex criteria-based assessments, plays a key role in the final stage of the ecological safety management system (ESMS) within the framework of civil defence [1]. These considerations underscore the relevance of the present research [2]. The ES of firefighting and emergency rescue vehicles (FERV) has been the subject of numerous studies by both Ukrainian and international researchers, highlighting the growing relevance of criteria-based approaches to evaluating the ES level of such systems. This

relevance is further amplified by the pressuring need to address the fuel crisis driven by the depletion of fossil fuel reserves. A viable solution lies in the adoption of alternative fuels, with biodiesel being a primary candidate [1]. Developing advanced mathematical models for complex ES level assessments of FERVs with diesel reciprocating internal combustion engines (RICE) operation requires validated simulation data. This includes, in particular, models for pollutant formation and transformation in exhaust gas flows, using tools such as Blitz-PRO – an open-source ICE cycle simulation platform [3].

The study aligns with national strategic documents, including Presidential Decree № 722/2019 dated 30.09.2019 «About the Sustainable Development Goals of Ukraine for the period up to 2030» [4], and the «Regulation on the Organization of Environmental Support of the SES of Ukraine», approved by Order № 618 dated 20.09.2013 [5].


Purpose of the study. To develop a model for the accident-free operation of FERV equipped with RICE, and to optimize the structure of this model by considering the fuel and ecological efficiency of the operation process when using both conventional diesel fuel and blended fuels containing biodiesel. **Object of the study.** The accident-free operation process of FERVs powered by RICE. **Subject of the study.** The optimized structure of the operational model, with an emphasis on fuel and ecological efficiency when using both petroleum-based diesel and biodiesel-blended fuels.

Concept of the Exploitation Model

RICE-powered power plants (PP), including FERV and other specialized equipment operated by divisions of the SES of Ukraine, are significant sources of ecological hazard. These hazards determine the ES level of their accident-free operation [1,2].

To perform a complex assessment of the effectiveness of measures aimed at ensuring compliance with legislatively mandated ES levels – within the framework of the ESMS – it is recommended to apply the complex fuel and ecological criterion (K_{fe}) developed

by Prof. Ihor Parsadanov (NTU "KhPI") and further enhanced in [1]. Such an assessment requires the existence of an exploitation model tailored to the purpose and operational conditions of the RICEpowered systems. Currently, such model does not specifically exist for FERVs. The suggested exploitation model has been developed based on an averaged operational duty duration diagram of the State Fire and Rescue Departments (SFRD) of Kharkiv [2] (see Fig. 1) and includes six key operational segments (polygons): 1. Call Waiting – the standby period in which the unit is on alert and awaiting deployment. 2. Call Forwarding – the stage of dispatch and coordination, involving communication and routing to the incident. 3. Combat Deployment – mobilization and travel to the emergency site under operational readiness. 4. Emergency and **Rescue Operations** – active firefighting or rescue efforts utilizing engine-driven equipment. **5. Clotting of Equipment** – postoperation cooldown, deactivation, and securing of equipment. **6. Return to Location** – travel back to the base or station following mission completion.

Figure 1. The developed exploitation model polygons parameters [2]

This research has been conducted within the framework of the scientific project "Development of a Methodology for Complex Assessment of the Environmental Impact of the Operation and Use of Special Equipment under Conditions of Military Aggression" (State Registration No. 0124U000374). The study utilized resources from the VCU library system, including electronic journals,

databases, and interlibrary loan services, accessed through participation in the Non-Resident Academic Associates Program, co-sponsored by the College of Humanities and Sciences at Virginia Commonwealth University and the Davis Center for Eurasian Studies at Harvard University during the 2024–2025 academic year.

REFERENCES

- 1. O.M. Kondratenko, V.Yu. Koloskov, Yu.F. Derkach, S.A. Kovalenko (2020) Physical and mathematical modeling of processes in particulate matter filter in practical application of criteria based assessment of ecological safety level: Monograph. Kharkiv, Publ. Style-Izdat, 522 p. URL: http://repositsc.nuczu.edu.ua/handle/123456789/13186
- 2. O.M. Kondratenko (2020) Selection of rational ecological safety structure of exploitation process model of emergency and rescue vehicle with reciprocating ICE, Materials of International scientific and practical conference «Problems of emergency situation» (PES–2020) (May 20 2020, NUCDU, Kharkiv), pp. 363–365. URL: http://repositsc.nuczu.edu.ua/handle/ 123456789/11664.
- 3. Blitz-PRO. Online open-source Internal Combustion Engines operating cycle simulation tool [Electronic resource]. URL: http://blitzpro.zeddmalam.com/application/index.
- 4. Presidential Decree № 722/2019 of 30.09.2019 «About the Sustainable Development Goals of Ukraine for the period up to 2030». URL: https://zakon.rada.gov.ua/laws/show/722/2019#Text.
- 5. Order of SES of Ukraine № 618 of 20.09.2013 «On approval of the Regulations on the organization of environmental support of the State Emergency Service of Ukraine». URL: https://zakon.rada.gov.ua/rada/show/v0618388-13#Text.

UDC 504.064.4:621.431:389.14:528.088

JUSTIFICATION OF RATIONAL UNITS OF MONETARY EQUIVALENTS OF ECOLOGICAL SAFETY LEVEL INDICATORS OF FIREFIGHTING AND EMERGENCY-RESCUE VEHICLES EXPLOITATION PROCESS

- O. Kondratenko, DSc(Engineering), Professor, Head of the Department of Environmental Protection Technologies of the Scientific and Educational Institute of Management and Population Safety, National University of Civil Protection of Ukraine of SES of Ukraine,
 - V. Koloskov, CandSc(Engineering), Associate Professor, Professor of the Department of Environmental Protection Technologies of the Scientific and Educational Institute of Management and Population Safety, National University of Civil Protection of Ukraine of SES of Ukraine
- H. Koloskova, CandSc(Engineering), Associate Professor, Head of the Department of Structures and Designing of Rocket Technique of the Faculty of Rocket and Space Engineering, National Aerospace University «Kharkiv Aviation Institute» of MES of Ukraine
- O. Lytvynenko, CandSc(Philology), Associate Professor, Associate Professor of the Department of Language Training of the Scientific and Educational Institute of Management and Population Safety, National University of Civil Protection of Ukraine of SES of Ukraine

Ecological safety (ES) is a critical component of national security on both global and local scales. Particular emphasis is placed on the economic aspects of the complex, criteria-based assessment of ES levels, which constitutes the final stage of the ES management system (ESMS) within the broader framework of civil defense system. These assessments serve as a foundation for management decisions in the field of civil defense service, relying on a specialized methodological framework [1]. The relevance of the study arises from this context. Moreover, the results may contribute to the development of methodologies for forecasting the operational costs and service life of firefighting and emergency rescue vehicles (FERV) equipped with reciprocating internal combustion engines (RICE) [2]. This is

particularly pertinent in scenarios where enhancing ES involves transitioning to the use of alternative, renewable motor fuels [3]. Purpose of the study. To provide a calculated grounding for the selection of rational units of measurement for the monetary components within the complex fuel-ecological criterion structure, used to assess the ES level of the exploitation process of power plants (PP) with RICE. Object of the study. The monetary components of ES level indicators related to the operation of PP powered by RICE. Subject of the study. The choice of appropriate units for expressing the monetary components and approaches for incorporating effects quantitative evaluation. inflationary into their mathematical framework for the complex fuel-ecological criterion K_{fe} was originally developed by Prof. Ihor Parsadanov (NTU "KhPI") [4]. Current exchange rate data for major currencies relative to Ukrainian hryvnia are available on the official website of the National Bank of Ukraine [5]. The study aligns with national strategic documents, including Presidential Decree № 722/2019 dated 30.09.2019 «About the Sustainable Development Goals of Ukraine for the period up to 2030» [6], and the «Regulation on the Organization of Environmental Support of the SES of Ukraine», approved by Order № 618 dated 20.09.2013 [7].

Methodological Basis and Price Variants for Diesel Fuel

In the study, several historical variants of the price per kilogram of diesel fuel (P_f) have been calculated to justify the choice of appropriate monetary units for the K_{fe} criterion. These include: A) 1.81 $\frac{2}{kg}$ – as recorded at the time of the publication of the monograph [4] (2003); B) 0.34 $\frac{4}{kg}$ – USD equivalent of the Variant A; C) 23.08 $\frac{2}{kg}$ – as recorded at the time of the publication of the monograph [2] (2018); D) 0.871 $\frac{4}{kg}$ – USD equivalent of the Variant C; E) 29.40 $\frac{2}{kg}$ – as recorded at the time of the publication of the monograph [1] (2019); G) 1.153 $\frac{4}{kg}$ – USD equivalent of the Variant E.

The calculations have been performed using the D21A1 autotractor diesel engine (type designation 2Ch10.5/12 in accordance with ISO 3046-1:2002) as the reference model. Its technical specifications are provided in [1]. The exploitation model

applied was the 13-regime standardized steady test cycle, as defined by UNECE Regulation № 49 [1]. The initial dataset for this study has been derived from the analysis of bench motor tests, as described in studies [1-3], for the 2Ch10.5/12 autotractor diesel engine. This dataset includes the distribution of monetary components of the K_{fe} criterion across the engine's operational regime field.

To account for inflation in the chosen unit of expression for the value equivalents of the K_{fe} criterion, the study suggests using the mathematical framework of the Consumer Price Index (CPI). The CPI for the US dollar was 175 in 2003 and has since increased to 254 [1]. This inflationary adjustment is represented by formulas (1) and (2).

$$z_j = Z_j(t) \cdot CPI_{\$}(t)/100,$$

$$\Sigma(ct, pt)/\Sigma(c0, p0)$$
(1)

$$CPI = \sum (Q_i^t \cdot P_i^t) / \sum (Q_i^0 \cdot P_i^0) \cdot 100$$
(2)

In the context of the study, index j denotes the type of monetary costs (j = e, f or fe), with t representing the current date. Z_j corresponds to the monetary costs in units of $/(kW \cdot h)$. Index i refers to the type of product, and index 0 represents the magnitude for the base period (for USD, the base period is 1982–1984, where the CPI = 100). The total quantity of produced goods is denoted by Q, and P represents the price of the produced goods in US dollars.

This research has been conducted within the framework of the scientific project «Development of a Methodology for Complex Assessment of the Environmental Impact of the Operation and Use of Special Equipment under Conditions of Military Aggression» (State Registration No. 0124U000374). The study has utilized resources from the VCU library system, including electronic journals, databases, and interlibrary loan services, accessed through participation in the Non-Resident Academic Associates Program, co-sponsored by the College of Humanities and Sciences at Virginia Commonwealth University and the Davis Center for Eurasian Studies at Harvard University during 2024–2025 academic year.

REFERENCES

- 1. O.M. Kondratenko, V.Yu. Koloskov, Yu.F. Derkach, S.A. Kovalenko (2020) Physical and mathematical modeling of processes in particulate matter filter in practical application of criteria based assessment of ecological safety level: Monograph. Kharkiv, Publ. Style-Izdat, 522 p. URL: http://repositsc.nuczu.edu.ua/handle/123456789/13186.
- 2. Kondratenko O.M. Metrological aspects of complex criteria-based assessment of ecological safety level of exploitation of reciprocating engines of power plants: Monograph. Kharkiv: Style-Izdat. 2019.
- 3. Kondratenko O., Mishchenko I., Chernobay G., Derkach Yu. and etc. Criteria based assessment of the level of ecological safety of exploitation of electric generating power plant that consumes biofuels, 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS–2018): Book of Papers, 10–14 September 2018, National Technical University «KhPI», Kharkiy, Ukraine. 2018. P. 185–189.
- 4. Parsadanov I.V. Improving the quality and competitiveness of diesel engines based on complex fuel and ecological criteria: Monograph. Kharkiv: NTU «KhPI», 2003.
- 5. Official site of National Bank of Ukraine. URL: https://bank.gov.ua/control/en/curmetal/detail/currency?period=daily.
- 6. Presidential Decree № 722/2019 of 30.09.2019 «About the Sustainable Development Goals of Ukraine for the period up to 2030» [Electronic resource]. URL: https://zakon.rada.gov.ua/laws/show/722/2019#Text.
- 7. Order of SES of Ukraine № 618 of 20.09.2013 «On approval of the Regulations on the organization of environmental support of the State Emergency Service of Ukraine» [Electronic resource]. URL: https://zakon.rada.gov.ua/rada/show/v0618388-13#Text

BIOLOGICAL, CHEMICAL, AND ENVIRONMENTAL THREATS DURING WAR

PROCEEDINGS OF I INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE

Literary Editor Halyna Padyk

Computer Layout Marianna Klymus

Printing Nazarii Petrolyuk

Format: 60×84/16. Typeface: Times New Roman. Paper: Offset. Printing sheets: 9,6.

Printed by Lviv State University of Life Safety 35 Kleparivska St., Lviv, 79007, Ukraine Tel./Fax: (032)233-24-79 E-mail: vnrd@ldubgd.edu.ua

Certificate of Publishing Entity DK No. 7249 dated February 9, 2021.