

VI. INTERNATIONAL CONGRESS OF CULTURAL LANDSCAPES WITHIN THE FRAMEWORK OF SUSTAINABLE DEVELOPMENT

Culture-Landscape-History-Archeology-Art

Amasya, Türkiye

November 13-14, 2025

CONFERENCE PROCEEDINGS BOOK

Editors

Prof. Dr. Öner DEMİREL

Prof. Dr. Atila GÜL

Assoc. Prof. Dr. Sultan Sevinç KURT KONAKOĞLU

**6th INTERNATIONAL CONGRESS of CULTURAL LANDSCAPES
WITHIN THE FRAMEWORK OF SUSTAINABLE DEVELOPMENT**

Copyright © Liberty

Date: 03.12.2025

Liberty Publishing House
Water Street Corridor New York, NY 10038
www.libertyacademicbooks.com
+1 (314) 597-0372

ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOCOPYING OR BY ANY ELECTRONIC OR MECHANICAL MEANS, INCLUDING INFORMATION STORAGE OR RETRIEVAL SYSTEMS, WITHOUT PERMISSION IN WRITING FROM BOTH THE COPYRIGHT OWNER AND THE PUBLISHER OF THIS BOOK.

© Liberty Academic Publishers 2025

The digital PDF version of this title is available Open Access and distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 license (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits adaptation, alteration, reproduction and distribution for noncommercial use, without further permission provided the original work is attributed. The derivative works do not need to be licensed on the same terms.

adopted by Mariam Rasulan

ISBN: 979-8-89695-252-7

Copyright © 2025 by Liberty Academic Publishers All rights reserved

**VI. INTERNATIONAL CONGRESS OF CULTURAL
LANDSCAPES WITHIN THE FRAMEWORK OF
SUSTAINABLE DEVELOPMENT**

November 13-14, 2025

Amasya, Turkiye

**CONFERENCE
PROCEEDINGS BOOK
(Abstracts & Full Texts)**

Editors

Prof. Dr. Öner DEMİREL

Prof. Dr. Atila GÜL

Assoc. Prof. Dr. Sultan Sevinç KURT KONAKOGLU

Layout Editor

İskender Emre Gül

Cover Design

Assist. Prof. Dr. Kadir Tolga ÇELİK

ISBN: 979-8-89695-252-7

DOI: 10.5281/zenodo.17795807

Issued: December 3, 2025

K.Sarmila Har Beagam		
Aravindhan. R	Iot-enabled regenerative braking and battery management system for bldc-based electric vehicles	192
D.Thamarei selvan		
Nurun Nahar Akter		
Adnan Munim	Comprehensive genomic analysis of highly pathogenic and multidrug-resistant escherichia coli isolates from poultry in noakhali, Bangladesh:implications for zoonotic transmission	193
Shipan Das Gupta		
Marina A. Shvetsova		
Elena V. Mikhachenko	Approximation of chemical kinetics by neural networks	194
Magomed U. Malsagov		
Belarbi Faten	Expirimental study of environmentally cu2sns3 material for solar cell application	195
Mahedi Hasan		
Aysha Akter Metu	Breeding biology of the long-tailed shrike (lanius schach) and its response to brood parasitism by the asian koel (eudynamys scolopaceus)	196
Alif Ali Jony		
Najmin Tamanna Bonna	Supercritical water gasification and oxidation for waste treatment: a systematic review of feedstocks, catalysts, and scale-up strategies	197
Maria Tabassum		
	A hybrid model approach in assessment of customer loyalty in mobile financial services	198
David Kovtun	Improving the environmental safety of water demineralization using magnetically activated ion exchange	199
Md. Nadimul Islam		
Tahsina Islam Afra	Comparative analysis of lightweight cnn architectures for violence detection in video frames: mobilenetv3 vs. Efficientnetb0 with attention	200
Seemab Raza		
Wajahat Ali	Innovating for sustainability: the role of circular economy in e-waste management	201

IMPROVING THE ENVIRONMENTAL SAFETY OF WATER DEMINERALIZATION USING MAGNETICALLY ACTIVATED ION EXCHANGE

David Kovtun

National University of Civil Protection of Ukraine

ABSTRACT

The process of demineralization of natural water, which is used to obtain high-purity water, has a number of environmental risks associated with the use of chemicals, the formation of concentrated wastewater, and energy consumption. Ion exchange and reverse osmosis, which are the main methods of demineralization, involve the use of significant amounts of reagents such as acids, alkalis, and regeneration solutions. Their improper disposal or leakage can cause contamination of soil and aquatic ecosystems, altering the natural chemical balance. Demineralization produces highly mineralized wastewater (concentrates) containing significant amounts of removed salts and impurities. Discharging them into natural water bodies without proper treatment can lead to an increase in osmotic pressure in the aquatic environment, which negatively affects aquatic organisms, causing their dehydration or death. The main methods of discharge and disposal of such concentrates are:

1. Discharge into sewage systems — subject to compliance with regulatory requirements, concentrates can be discharged into municipal or industrial wastewater. Before this, neutralization (addition of acid or alkali to normalize pH) and dilution are carried out to reduce the negative impact on treatment facilities.
2. Evaporation and crystallization - in some cases, the technology of evaporating water from the concentrate is used to obtain dry salt residues that can be disposed of or used in industry (for example, in the production of reagents or building materials).
3. Discharge into water bodies — only possible after pre-treatment, if environmental standards allow. In this case, the concentrates are diluted to safe concentrations or undergo additional treatment.
4. Injection into deep underground layers — in some regions, concentrates are injected into geological formations that do not come into contact with drinking water. This is an expensive but environmentally safe method.
5. Use in production processes — for example, sodium chloride concentrates can be used in salt production, and concentrated sulfate solutions can be used in the chemical industry.

Demineralization is an energy-intensive process that increases greenhouse gas emissions and contributes to environmental change. Therefore, it requires environmentally safe technologies to minimize waste, reuse water, and improve energy efficiency. The problem of water availability for the population requires the improvement of water treatment systems. It is necessary to reduce the impact on the environment, the demineralization process, and achieve effective treatment, ensuring the availability of usable water for the population. To improve the efficiency and environmental safety of ion exchange processes, a method has been proposed that involves the use of modified ion exchangers with simultaneous exposure of the ion exchange bed and the water to be purified to a magnetic field. This approach eliminates the main drawback of the traditional magnetic purification method, which is related to the limitation of its application in conditions of high-water hardness. The use of magnetic activation contributes to the intensification of mass transfer processes, increases the efficiency of desalination, and ensures the stable operation of ion exchange systems. The proposed method is consistent with current state policy in the field of rational use and protection of water resources in Ukraine, which is based on the principles of sustainable development, resource conservation, and environmental safety.