АНАЛИЗ ТВЕРДОФАЗНЫХ РАВНОВЕСИЙ В СИСТЕМЕ $CaO-CoO-NiO-Al_2O_3$.

Ч. 1. ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ФАЗОВЫХ РАВНОВЕСИЙ В СУБСОЛИДУСЕ СИСТЕМЫ CaO − CoO - Al₂O₃.

Д-р. техн. наук C.M. Логвинков¹, д-р. техн. наук $\Gamma.H.$ Шабанова², канд. техн. наук T.Д. Рыщенко³, д-р. техн. наук A.H. Корогодская², канд. техн. наук E.B. Христич², C.B. Левадная²

В статье представлены исследования, в которых рассматриваются различные вопросы субсолидусного строения и его характеристик для отдельных подсистем и системы $CaO-CoO-NiO-Al_2O_3$. Рассмотрены области применения керамических материалов на основе гетерофазных композиций исследуемой системы и перспективы их развития. Приведены результаты термодинамических расчетов анализируемых твердофазных реакций обмена и установленные сосуществующие комбинации соединений. В необходимом объеме даны результаты геометротопологических расчетов и характеристик многокомпонентных эвтектик в отдельных концентрационных областях системы. Построены топологические графы взаимосвязи элементарных тетраэдров системы $CaO-CoO-NiO-Al_2O_3$ до 1530 К и выше температуры разложения тройного оксида $Ca_3CoAl_4O_{10}$, необходимые для дальнейшего анализа более многофазных равновесий с участием соединений исследуемой

Ключевые слова: субсолидусное строения, твердофазных реакций обмена, термодинамические расчеты, геометротопологические характеристики, эвтектики.

Analysis of the solid-phase equilibria in the system $CaO - CoO - NiO - Al_2O_3$. Part. 1. Thermodynamic analysis of phase equilibria in the system subsolidus $CaO - CoO - Al_2O_3$. / S. Logvinkov¹, G. Shabanova², T. Ryshchenko³, A. Korohodska², E. Khristich², S. Levadnaya²

In given study the articles concerning various questions of subsolidus structure well as their characteristics for individual subsystems and system CaO - CoO - NiO - Al_2O_3 are presented. The applications of ceramic materials based on heterophase compositions of the system being studied and prospects for their development are considered. The results of thermodynamic estimations of solid-state exchange reactions being analyzed and revealed coexisting compound combinations are shown. The data of geometro-topological calculations and multicomponent eutectic characteristics for certain concentration regions of the system are given. The topological graphs of relationship between elementary tetrahedrons of the system CaO - CoO - NiO - Al_2O_3 to 1530 K and above the decomposition temperature of $Ca_3CoAl_4O_{10}$ have been constructed. Mentioned above data are necessary for further analysis of multicomponent equilibria including compositions of the system being investigated.

Keywords: subsolidus structure, solid- exchange reactions, thermodynamic estimations, geometro-topological calculations, eutectic.

Введение.

системы.

Актуальность исследования фазовых равновесий в системе $CaO - CoO - Al_2O_3$ (далее используются сокращения: $A - Al_2O_3$, C - CaO, Co - CoO) обусловлена возрастающим уровнем противоречий между расширением областей практического

 $^{^{1}}$ Харьковский Национальный экономический университет им. С. Кузнеца, Украина;

 $^{^{2}}$ Национальный технический университет «Харьковский политехнический институт», Украина; 3 Харьковский национальный университет городского хозяйства им. А.Н. Бекетова, Украина.

применения гетерофазных материалов и ограниченностью сведений о стабильности двойных и тройных комбинаций соединений этой системы. Строение диаграммы состояния системы CaO - CoO - Al₂O₃ изучено недостаточно и лишь в последнее время стало привлекать внимание исследователей в связи с освоением технологии деоксидации кобальтсодержащих суперсплавов с помощью алюминия, при которой новообразование в виде оксида алюминия выполняет функцию дисперсноармирующего компонента [1, 2]. Двойные подсистемы изучены более детально в широкомасштабным применением в промышленности связи с только индивидуальных, но и бинарных оксидов и их композиций. Оксид кальция является основополагающим для цементной промышленности и для соответствующего класса огнеупорных материалов [3]. Оксид кобальта входит в состав многих пигментов, эмалей являясь классическим оксидом «сцепления» [4]. Оксид алюминия служит исходным сырьем для производства алюминия, одним из основных материалов абразивной промышленности, применяется в производстве корундовых огнеупоров и чрезвычайно важен в технологиях конструкционной и технической керамики, монокристаллов и сцинтилляционных материалов [3]. Алюминаты кальция ($Ca_3Al_2O_6$, $Ca_{12}Al_{14}O_{33}$, $CaAl_2O_4$, $CaAl_4O_7$, $CaAl_{12}O_{19}$) имеют исключительное значение при получении специальных глиноземистых цементов, а система СаО – Al₂O₃ показательная для технологии огнеупоров: индивидуальные оксиды высокоогнеупорные, а минимальная эвтектика с участием Са₁₂Al₁₄O₃₃ отмечается всего при 1668 К [5, 6]. В настоящее время гексаалюминат кальция (СаА1₁₂О₁₉) приобрел самостоятельное промышленное значение в качестве компонента специальных огнеупорных бетонов, в частности, выпускается фирмой «Almatis» под торговым названием бонит [7]. Алюмокобальтовая шпинель (CoAl₂O₄) с 1673 К образует твердые растворы $CoAl_{2+2x}O_{4+3x}$ и придает голубой цвет пигментам, важна для получения катализаторов высокотемпературных процессов органического синтеза, а магнитные свойства определяют перспективы применения для новых материалов электротехнического назначения [8]. В бинарной системе СаО – СоО существует непрерывный ряд твердых растворов, что отмечалось при изучении фазовых равновесий силикатов кальция в комбинациях с NiO и CoO [9, 10]. Однако, следует отметить, что при температурах до 1273 К кобальт может проявлять валентность +3 и образовывать соединения Co_3O_4 и $Ca_3Co_4O_9$.

Субсолидусное строение исследуемой трехкомпонентной системы представлено в работе [1], где отмечено и существование тройного соединения $Ca_3CoAl_4O_{10}$ (орторомбическая система $P_{bc}2_1$, параметры решетки (нм): a=0,514; b=1,677; c=1,071). Триангуляция системы выполнена для высокотемпературной области (> 1573 K), без учета тройного соединения (температура плавления $Ca_3CoAl_4O_{10}$ указывается близкой 1530 K) и из топологических соображений, по мнению авторов исследования [2]. В работе [2] представлена триангуляция системы при 1500 K (рис.1), выполненная по результатам экспериментальных исследований фазового состава спеков, в т.ч. с применением оксидных соединений, заранее синтезированных из химически чистых оксидов и $CaCO_3$ при 1500 K в среде сухого аргона.

Кроме того, в работе [2] представлены результаты электрохимических исследований твердого электролита из смеси заранее синтезированных оксидов $CaAl_2O_4$, $Ca_{12}Al_{14}O_{33}$, $Ca_3CoAl_4O_{10}$ и металлического Co, размещенного в заглушенной трубке из ZrO_2 (стабилизирован CaO). Мольное соотношение оксидов и металлического кобальта 1:1:1:1,5 позволило провести гальванические измерения на электрохимической ячейке: (-) Pt, $CaAl_2O_4 + Ca_{12}Al_{14}O_{33} + Ca_3CoAl_4O_{10} + Co$ // $(CaO)ZrO_2$ // CoO + Co, Pt (+) в интервале 900 - 1500 К и получить зависимость изменения энергии Γ иббса (ΔG) от температуры (T) для реакции:

$$\mathrm{Co} + 3/5\mathrm{CA} + 1/5\mathrm{Ca}_{12}\mathrm{Al}_{14}\mathrm{O}_{33} = \mathrm{Ca}_3\mathrm{CoAl}_4\mathrm{O}_{10}, \Delta G = -2673 + 0{,}289\ T$$
 (Дж/моль).

На основе этой зависимости авторы [2] вычислили стандартные значения изменения энтальпии образования ($\Delta H^o_{298,15}$) и энтропии образования из элементов ($S^o_{298,15}$) тройного соединения $Ca_3CoAl_4O_{10}$: - 5525,2 \pm 5,8 кДж/моль и 321,4 \pm 3,5 Дж/моль·К, соответственно. Следует отметить, что произвольно выбранная в [2] реакция образования соединения $Ca_3CoAl_4O_{10}$ из отмеченных оксидов отличается от истинного механизма массообменных процессов при его синтезе, что может быть причиной существенной неучтенной погрешности рассчитанных стандартных значений $\Delta H^o_{298,15}$ и $S^o_{298,15}$.

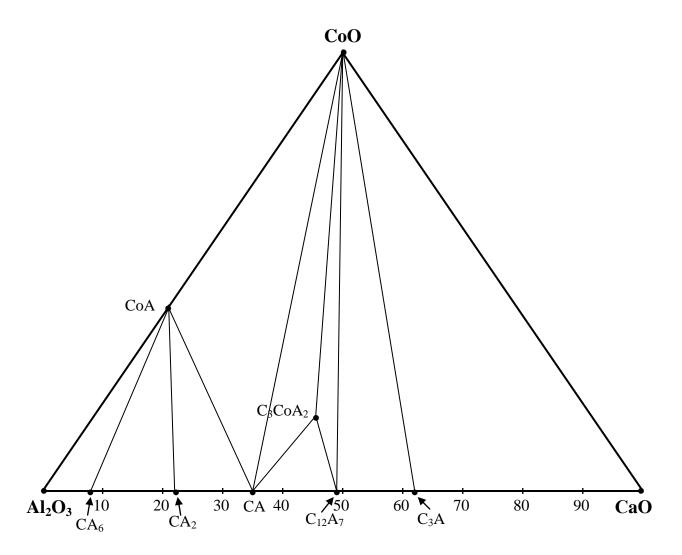


Рис. 1. Триангуляция системы $CaO - CoO - Al_2O_3$ при 1500 K, по результатам исследования [2].

Учитывая изложенное, представляется целесообразным выполнить термодинамические расчеты фазовых равновесий в исследуемой системе и проверить адекватность теоретических и экспериментальных данных в соответствии со стабильностью многофазных комбинаций.

Результаты исследований будут перспективны при решении технологических задач модификации глиноземистых и высокоглиноземистых цементов, утилизации отходов кобальтосодержащих катализаторов на корундовом носителе, синтеза специальных вяжущих материалов с определенным комплексом электрофизических свойств.

Исходные данные и методика исследований.

Фазовые равновесия в субсолидусе системы CaO – CoO - Al₂O₃ определялись методом термодинамического анализа предпочтительности протекания твердофазных обменных реакций по рассчитанным для них зависимостям изменений свободной энергии Гиббса от температуры. Расчет значений ΔG проводился в интервале температур $1000-2000~{\rm K}~{\rm c}$ шагом $100~{\rm K}$ по известным методикам [6, 11 - 18], учитывающим температурные зависимости изменения стандартной энтальпии и стандартной энтропии образования соединений из элементов ($\Delta H^o_{289,15}$ и $S^o_{298,15}$, соответственно) от изменений теплоемкости ($C_p = f(T)$).

Стандартные термодинамические характеристики для большинства соединений исследуемой системы экспериментально определены и приводятся в различных литературных источниках [6, 11, 14-16] с незначительными вариациями в погрешности значений. Для некоторых соединений, в частности СаА1₁₂О₁₉, известны только рассчитанные значения стандартных термодинамических данных [19]. Для алюмокобальтовой шпинели значения ΔH^{o}_{289} и S^{o}_{298} определены [15, 16], но зависимость теплоемкости от температуры не исследовалась вплоть до работы [8]. В этой работе экспериментально изучалась низкотемпературная (5 – 400 К) теплоемкость образцов материалов, синтезированных из химически чистых оксидов (смешение в ацетоне, прессование, обжиг на 1573 К (изотермическая выдержка 48 часов) и охлаждение со скоростью 1 градус в минуту до 1073 К (изотермическая выдержка 7 дней)). Синтезированная алюмокобальтовая шпинель имеет параметр кубической кристаллической решетки 0,8086(2) нм, а рассчитанная по теплоемкости стандартная энтропия образования из элементов - $101,31\pm0,2$ Дж·моль⁻¹·К⁻¹. Последнее значение лишь на 0,4 % отличается от данных [16], что позволило с учетом наших расчетов по методикам [6, 17, 18] экстраполировать зависимость теплоемкости от температуры в область интересующих значений 1000 – 2000 К. Расчетные коэффициенты зависимости $C_p = f(T)$ для кобальтовой шпинели в высокотемпературной области обеспечивают погрешность не более 5 %, по сравнению с экспериментально определенными [6] при температурах 298,15 – 400,25 К. Аналогичные расчеты выполнены по методикам [17] для Ca₃CoAl₄O₁₀. При выборе исходных термодинамических значений предпочтение отдано данным [16], представленным в базе данных JANAF (табл. 1).

Таблица 1 -	Исходные термодинамические данные.
-------------	------------------------------------

No	Соединение	ΔH° ₂₈₉ ,	Источ	S° ₂₉₈ ,	Источ	$C_p = a + e \cdot 10^{-3} T - c \cdot 10^5 \cdot T^2$			Источ
ПП		кДж/моль	ник	Дж/моль·	ник	а	в	С	ник
				К					
1	CaO	635,1	[16]	38,2	[16]	49,62	4,52	6,94	[16]
2	Ca ₃ Al ₂ O ₆	3587,7	[16]	205,9	[16]	260,58	19,16	50,25	[16]
3	$Ca_{12}Al_{14}O_{33}$	19430	[16]	1044,7	[16]	1263,40	274,05	231,37	[16]
4	CaAl ₂ O ₄	2326,3	[16]	120,79	[16]	108,78	24,94	33,30	[16]
5	CaAl ₄ O ₇	3977,7	[16]	177,82	[16]	276,52	22,93	74,47	[16]
6	CaA ₁₂ O ₁₉	11223,671	[19]	345,14925	[19]	796,974	128,589	205,995	[19]
7	CoO	238,9	[16]	52,97	[16]	48,28	8,535	-1,67	[16]
8	CoAl ₂ O ₄	1948,9	[16]	101,7	[16]	149,03	30,54	27,32	[*]
9	Ca ₃ CoAl ₄ O ₁₀	5525,2	[2]	321,4	[2]	503,8	43,96	41,92	[*]
10	Al_2O_3	1676,0577	[16]	50,92	[16]	115,08	11,8	35,06	[16]

Примечания: (*) – настоящая статья.

Анализируемые твердофазные реакции.

Фазовые равновесия без учета тройного соединения $Ca_3CoAl_4O_{10}$ в субсолидусной области системы $CaO - CoO - Al_2O_3$ выше 1530 К определены предпочтительностью протекания твердофазных взаимодействий в соответствии с механизмом обменных реакций:

1.
$$CaO + 6CoAl_2O_4 = 6CoO + CaAl_{12}O_{19}$$
;

2.
$$CaO + 2CoAl_2O_4 \leftrightarrow 2CoO + CaAl_4O_7$$
 (1439 K);

3.
$$CaO + CoAl_2O_4 = CoO + CaAl_2O_4$$
;

4.
$$12CaO + 7CoAl_2O_4 = 7CoO + Ca_{12}Al_{14}O_{33}$$
;

5.
$$3CaO + CoAl_2O_4 = CoO + Ca_3Al_2O_6$$
;

6.
$$4\text{CoO} + \text{CaAl}_{12}\text{O}_{19} = 4\text{CoAl}_2\text{O}_4 + \text{CaAl}_4\text{O}_7;$$

7.
$$CoO + CaAl_4O_7 \leftrightarrow CoAl_2O_4 + CaAl_2O_4$$
 (1225 K);

8.
$$5\text{CoO} + 12\text{CaAl}_2\text{O}_4 = 5\text{CoAl}_2\text{O}_4 + \text{Ca}_{12}\text{Al}_{14}\text{O}_{33}$$
;

9.
$$5C_0O + C_0Al_{12}O_{19} = 5C_0Al_2O_4 + C_0Al_2O_4$$
;

10.
$$4Ca_3Al_2O_6 + 3CoAl_2O_4 \leftrightarrow 3CoO + CaAl_2O_4$$
 (1011 K).

Примечание: В скобках указаны рассчитанные температуры обратимости реакций.

Возможность локализации тройного соединения $Ca_3CoAl_4O_{10}$ в элементарном треугольнике $CaAl_2O_4$ — $Ca_{12}Al_{14}O_{33}$ — CoO определяется термодинамической предпочтительностью протекания ниже 1530 К реакций:

11.
$$Ca_3CoAl_4O_{10} + CoAl_2O_4 = 3CaAl_2O_4 + 2CoO;$$

12.
$$7Ca_3CoA_4O_{10} + 3CaO = 7CoO + 2Ca_{12}Al_{14}O_{33}$$
;

13.
$$Ca_3CoAl_4O_{10} + 3CaO = CoO + 2Ca_3Al_2O_6$$
;

14.
$$Ca_3CoAl_4O_{10} + CaA_4O_7 = CoO + 4CaAl_2O_4$$
;

15.
$$5Ca_3CoAl_4O_{10} + CaAl_{12}O_{19} = 5CoO + 16CaAl_2O_4;$$

16.
$$Ca_3CoAl_4O_{10} + Al_2O_3 = CoO + 3CaAl_2O_4;$$

17.
$$3Ca_3CoAl_4O_{10} + Ca_3Al_2O_6 = 3CoO + Ca_{12}Al_{14}O_{33}$$
.

Результаты расчетов и обсуждение.

Расчеты выполнялись на ЭВМ с точностью, определяемой последней значимой цифрой в исходных термодинамических данных для соединений (табл. 1), а результаты расчетов ΔG для реакций в системе CaO – CoO - Al₂O₃ представлены в табл. 2.

В первую очередь целесообразно рассмотреть твердофазные взаимодействия выше 1530 К для реакций N = 1 - 10 (табл. 2), характеризующих триангуляцию системы $CaO - CoO - Al_2O_3$ без учета легкоплавкого соединения $Ca_3CoAl_4O_{10}$. Эти взаимодействия имеют сложный характер — отмеченные реакции способны протекать не только в прямом, но и в обратном направлении (справа — налево; для их обозначения будет использоваться знак «штрих» возле номера реакции). Реакции N = 2, 7 и 10 обратимы при температурах 1439, 1225 и 1011 К, соответственно. Термодинамическая вероятность протекания реакций также изменяется: при 1000 К наиболее предпочтительны реакции N = 6, 9' и 1, а при 1900 К более выгодны реакции N = 8, 9' и 1.

Выше 1530 К по реакции № 7 устанавливается стабильность комбинации фаз СоО и $CaAl_{12}O_{19}$, что следует из отрицательной, значительной по модулю величине ΔG (табл. 2) и не коррелирует с низкотемпературной триангуляцией (рис.1).

Трехфазная комбинация $CoO - CaAl_4O_7 - CaAl_{12}O_{19}$ в высокотемпературной области также стабильна, что определяет наличие соответствующего элементарного треугольника, не существующего в низкотемпературной триангуляции (рис. 1) Это следует из алгебраического суммирования реакций N = 1 и 2 и соответствующего суммирования значений ΔG , определяющих взаимодействие:

$$2CaO + 8CoAl_2O_4 = 8CoO + CaAl_{12}O_{19} + CaAl_4O_7$$
 (1).

Обратимость реакции № 2 определяет возможность дестабилизации трехфазной комбинации $CoO - CaAl_4O_7 - CaAl_{12}O_{19}$ в низкотемпературной области, т.к. суммирование реакций № 1 и № 2 (определяющих стабильность упомянутой комбинации фаз по реакции (1)) может быть произведено при любом количестве их прогонов. Так, если количество прогонов реакций № 2 будет 20, то суммарное взаимодействие принципиально не изменит реакцию (1):

$$21\text{CaO} + 46\text{CoAl}_2\text{O}_4 = 46\text{CoO} + 20\text{CaAl}_4\text{O}_7 + \text{CaAl}_{12}\text{O}_{19}$$
 (2).

Однако, для реакции (2) при 1000 К будет отмечаться положительное значение $\Delta G = 99,05$ кДж/моль, а при 1100 К – отрицательное $\Delta G = -40,68$ кДж/моль, т.к. около 1071 К реакция (2) обратима и ниже этой температуры трехфазная комбинация $\text{CoO} - \text{CaAl}_4\text{O}_7 - \text{CaAl}_{12}\text{O}_{19}$ нестабильна. С ростом количества прогонов реакции \mathbb{N}_2 В суммарном взаимодействии с реакцией \mathbb{N}_2 1, температура дестабилизации будет приближаться к температуре обратимости реакции \mathbb{N}_2 2.

Нестабильность комбинации фаз CoO и CaAl₂O₄ по реакции № 3 (табл. 2) должна учитываться лишь до 1439 К, т.к. в высокотемпературной области в составе трехфазной комбинации CoO— CaAl₂O₄ — CaAl₄O₇ обеспечивается ее стабильность по суммарному взаимодействию реакций № 2 и № 3. По аналогии с выше указанными причинами уже при двух прогонах реакции № 2 суммарное взаимодействие отвечает реакции:

$$3CaO + 5CoAl_2O_4 = 5CoO + CaAl_4O_7 + CaAl_2O_4$$
 (3).

Не сложно проверить, что для реакции (3) суммирование соответствующих значений ΔG (табл. 2) при 1600 К дает положительную величину 6,65 кДж/моль, а при 1700 К — отрицательную — 0,50 кДж/моль. Реакция (3) обратима около 1693 К и температура дестабилизации трехфазной комбинации будет приближаться к температуре обратимости реакции № 2 при увеличении количества ее прогонов в суммарном взаимодействии с реакцией № 1.

Бинарные комбинации фаз CoO и Ca₁₂Al₁₄O₃₃, CoO и Ca₃Al₂O₆ стабильны в высокотемпературной области в соответствии с отрицательными значениями ΔG для реакции № 4 и № 5. Трехфазная комбинация CoO – C₃A l₂O₆ – Ca₁₂Al₁₄O₃₃ стабильна во всем температурном интервале и конноды между CaO и CoAl₂O₄ не существует, что следует из алгебраического суммирования реакций № 4 и № 5 и отрицательных значений ΔG для суммарной реакции:

$$15CaO + 8CoAl_2O_4 = 8CoO + Ca_{12}Al_{14}O_{33} + Ca_3Al_2O_6$$
 (4).

Таблица 2 - Результаты расчетов ΔG для реакций в системе CaO – CoO - Al $_2$ O $_3$.

№	Значение ΔG (кДж/моль) при температуре T (K)										
реак-	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
ции											
1	-420,75	-440,89	-462,26	-484,77	-508,30	-532,79	-558,15	-584,34	-611,29	-638,96	-667,31
2	25,99	20,01	14,04	8,12	2,25	-3,55	-9,27	-14,89	-20,40	-25,81	-31,09
3	7,20	9,30	11,80	14,67	17,87	21,39	25,19	29,28	33,63	38,24	43,05
4	-66,04	-87,98	-110,19	-132,72	-155,59	-178,83	-202,47	-226,52	-250,99	-275,91	-301,28
5	-16,63	-21,05	-25,42	-29,71	-33,92	-38,05	-42,08	-46,02	-49,86	-53,60	-57,23
6	446,74	460,89	476,31	492,88	510,55	529,24	548,89	569,45	590,89	613,16	-
7	-18,79	-10,70	-2,74	6,55	15,62	24,94	34,46	44,17	54,03	64,09	-
8	-152,78	-200,04	-257,34	-309,34	-370,74	-436,29	-505,77	-578,99	-655,78	-735,99	-819,49
9	427,95	450,19	474,04	499,43	526,17	554,17	583,35	613,62	644,92	677,19	-
10	0,47	-3,76	-8,52	-13,88	-19,91	-26,65	-34,14	-42,43	-51,54	-61,51	-72,36
11	76,01	97,49	120,87	145,98	172,68	200,84	-	-	-	-	-
12	252,99	316,07	383,57	454,86	529,53	607,05	-	-	-	-	-
13	-21,76	-28,18	-35,44	-43,49	-52,26	-61,72	-	-	-	-	-
14	57,82	87,49	119,45	153,46	189,33	226,91	-	-	-	-	-
15	776,66	894,46	1021,80	1158,20	1301,71	1452,89	-	-	-	-	-
16	51,31	74,47	99,56	126,40	154,84	184,74	-	-	-	-	-
17	145,32	179,17	214,89	252,19	290,82	330,59	-	-	-	-	-

Проанализированные фазовые равновесия указывают на другую триангуляцию в высокотемпературной области (выше 1439 К — по результатам расчетов) системы $CaO - CoO - Al_2O_3$ (рис. 2).

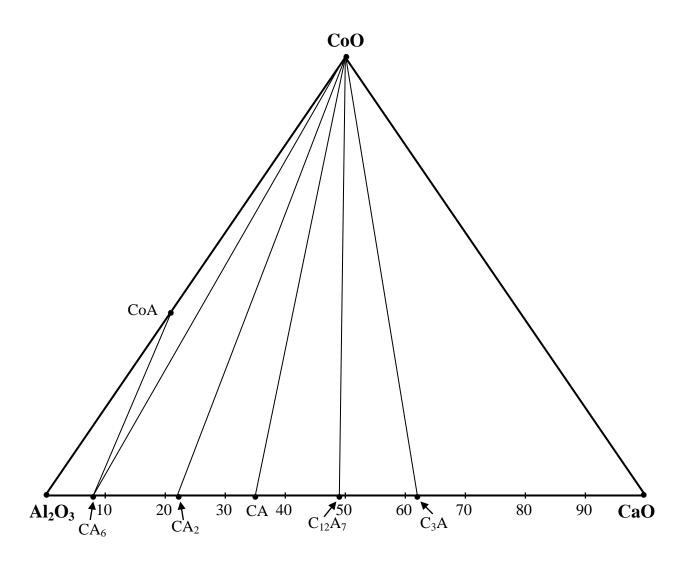


Рис. 2. Триангуляция системы $CaO - CoO - Al_2O_3$ в высокотемпературной области (выше 1439 К).

Расчетная температура обратимости реакции \mathbb{N} 2 и соответствующей перестройки коннод в субсолидусном строении системы $\mathrm{CaO}-\mathrm{CoO}$ - $\mathrm{Al_2O_3}$ может иметь погрешность в связи с установлением исходных термодинамических данных для алюмокобальтовой шпинели не прямыми высокотемпературными калориметрическими измерениями (коэффициенты

уравнения зависимости теплоемкости от температуры – результатами расчетов в настоящей работе, а значения стандартных энтропии и изменения энтальпии образования из элементов – электрохимическими измерениями [16]). Во всяком случае, термодинамическая тенденция к фазовой изменчивости и изменению субсолидусного строения исследуемой системы имеется и последующие экспериментальные исследования необходимо выполнять с учетом перестройки коннод.

Термодинамическая стабильность фаз CoO − CaAl₁₂O₁₉, CoO − CaAl₄O₇ и CoO − CaAl₂O₄ может оказаться меньшей в сравнении с другими бинарными комбинациями фаз в реакциях № 6 − 10, а также с тройными комбинациями Ca₃Al₂O₆ − CoAl₂O₄ − Ca₁₂Al₁₄O₃₃, Ca₁₂Al₁₄O₃₃ − CoAl₂O₄ − CaAl₂O₄ и CaAl₂O₄ − CaAl₂O₄ . Рассмотрим подобную возможность. Бинарная комбинация фаз CoO и CaAl₁₂O₁₉ кажется стабильной во всем интервале температур в соответствии с высокими положительными значениями ΔG (табл. 2) для реакций № 6 и № 9. Однако, в составе трехфазной комбинации CoO, CaAl₁₂O₁₉ и CaAl₄O₇ указанная бинарная комбинация фаз менее термодинамически выгодна в низкотемпературной области. Такая ситуация возникает из-за обратимого характера твердофазной реакции № 7, т.к. суммарное взаимодействие реакций № 6 и № 7 определяет стабильность комбинации CaAl₂O₄ и CoAl₂O₄ при значительном количестве числа прогонов реакции № 7. В частности, при количестве прогонов 30 суммарное взаимодействие отвечает реакции:

$$34CoO + 29CaAl_4O_7 + CaAl_{12}O_{19} = 34CoAl_2O_4 + 30CaAl_2O_4$$
 (5).

При 1000 К значение ΔG для реакции (5) отрицательное: -116,96 кДж/моль, а при 1100 К — положительное: 139,89 кДж/моль, т.е. реакция обратима около 1043 К. Как и в предыдущих случаях, с ростом количества прогонов реакции № 7 в суммарном взаимодействии с реакцией № 6 температура обратимости будет приближаться к 1225 К. Эта температура

также может иметь погрешность, т.к. во взаимодействии № 7 участвует $CoAl_2O_4$ и возможные причины аналогичны названным для реакции № 2. Дальнейший анализ взаимодействий по реакциям № 8 – 10 можно не проводить, т.к. отсутствие элементарного треугольника $CoO - CaAl_4O_7 - CaAl_1O_{19}$ и наличие конноды $CaAl_2O_4 - CoAl_2O_4$ полностью определяет низкотемпературную триангуляцию системы $CaO - CoO - Al_2O_3$, соответствующей рис. 1.

Теперь рассмотрим, имеются ли термодинамические предпосылки локализации соединения $Ca_3CoAl_4O_{10}$ внутри треугольника с вершинами в точках составов соединений $CaAl_2O_4$, $Ca_{12}Al_{14}O_{33}$ и CoO. Для этого рассмотрим реакции № 11 − 17 и соответствующие результаты расчетов (табл. 2). Возможность сосуществования CaO и $Ca_3CoAl_4O_{10}$ определяют реакции № 12 и № 13, которые имеют противоположные знаки ΔG . В связи с тем, что модули значений ΔG реакции № 12 больше, чем соответствующие модули значений ΔG для реакции № 13, то создается впечатление о сосуществуемости CaO и $Ca_3CoAl_4O_{10}$. Соответственно, такая бинарная комбинация фаз должна быть более термодинамически стабильной, чем все тройные комбинации фаз, составляющие элементарные треугольники, которые пересекает предполагаемая коннода. Однако, для ниже приводимой реакции отмеченное соответствие не соблюдается (ΔG_{1000K} = +6,82 и ΔG_{1500K} = -35,94 к ΔM /моль):

$$9Ca_{3}CoAl_{4}O_{10} + 18CaO = 9CoO + 11Ca_{3}Al_{2}O_{6} + Ca_{12}Al_{14}O_{33}$$
 (6)

Реакция (6) является линейной комбинацией: $0,5 \cdot [11 \cdot N \cdot 13 + N \cdot 12]$ и при увеличении количества прогонов реакции №13 бинарная комбинация фаз СаО и $Ca_3CoAl_4O_{10}$ становится нестабильной во всем интервале температур. Следовательно, фазы CaO и $Ca_3CoAl_4O_{10}$ не сосуществуют и в субсолидусной области до 1530 К есть коннода $CoO - Ca_{12}Al_{14}O_{33}$, которая определяет наличие элементарного треугольника $CaO - Ca_3CoAl_4O_{10} - Ca_{12}Al_{14}O_{33}$.

Обратим внимание на то, что реакция №12 является линейной комбинацией реакций №13 и №17 (№12 = №13 + $2 \cdot №17$), что может быть использовано для уточнения исходных термодинамических данных для $Ca_3CoAl_4O_{10}$.

Для окончательного вывода о локализации $Ca_3CoAl_4O_{10}$ внутри треугольника $Ca_{12}Al_{14}O_{33}$ — CoO — $CaAl_2O_4$ требуется еще подтвердить термодинамическую стабильность конноды CoO — $CaAl_2O_4$, по отношению к комбинациям фаз, которые могут представлять конкуренцию по механизмам реакций № 1, 14 — 16. Если коннода CoO — $CaAl_2O_4$ не существует, то из топологических принципов стабильна комбинация фаз $Ca_3CoAl_4O_{10}$ и $CoAl_2O_4$. Поэтому достаточно доказать, что существует какая-либо бинарная или тройная комбинация фаз, вероятность существования которой более термодинамически выгодна, чем комбинация $Ca_3CoAl_4O_{10}$ и $CoAl_2O_4$.

Для реакции (7) получены значения ΔG при 1000 К: -65,27, а при 1500 К: -203, 91 (кДж/моль):

$$3Ca_3CoAl_4O_{10} + 16CoAl_2O_4 = 19CoO + CaAl_{12}O_{19} + 8CaAl_4O_7$$
 (7).

Соответственно, конноды между $Ca_3CoAl_4O_{10}$ и $CoAl_2O_4$ не существует и, следовательно, стабильна коннода $CoO - CaAl_2O_4$ и локализация $Ca_3CoAl_4O_{10}$ в треугольнике $Ca_{12}Al_{14}O_{33} - CoO - CaAl_2O_4$ термодинамически обоснована. Также отметим, что реакция (7) может быть получена в результате линейной комбинации реакций с участием наиболее термодинамически предпочтительной среди реакций № 11 - № 17 реакции № 15:

$$(7) = 0.5 \cdot (N_{\overline{2}}15 + N_{\overline{2}}11 - 3N_{\overline{2}}9 - 16N_{\overline{2}}7).$$

Таким образом, при проведении исследований получены коэффициенты уравнений зависимости теплоемкости от температуры для алюмокобальтовой шпинели и тройного оксидного соединения $Ca_3CoAl_4O_{10}$, отсутствующие в справочной литературе. По результатам термодинамического анализа

фазовых равновесий показано, что локализация соединения Ca₃CoAl₄O₁₀ в треугольнике $Ca_{12}Al_{14}O_{33}$ – CoO – $CaAl_2O_4$ является обоснованной и низкотемпературная (до 1530 K) триангуляция системы CaO – CoO – Al₂O₃ Вместе с тем, сложный характер твердофазных соответствует рис. 1. взаимодействий выше 1530 К (по расчетам 1439 К) обусловливает перестройку коннод в субсолидусном строении системы CaO - CoO - Al₂O₃ (рис. 2), что требуется учитывать при трактовке получаемых экспериментальных данных и при прогнозировании фазового состава новых керамических материалов в соответствующих концентрационных областях диаграммы состояния.

Библиографичекий список:

- 1. **B. Vazquez, L.M.T. Martinez, N. Alvarez, J.F. Vente, P.Quintana**Phase Equilibria in the System CaO Al₂O₃ –CoO and the Crystal Structure of Novel Ca₃CoAl₄O₁₀ // J. Solid State Chem., 2002, 166 (1).
 P. 191 -196.
- 2. **K.T. Jacob, Ch. Shekhar, G.M. Kale** Phase Equilibria in the System $CaO Al_2O_3$ –CoO and Gibbs Energy of Formation of $Ca_3CoAl_4O_{10}$ // J. Phase Equilibria and Diffusion. 2009. V. 30. $Noldsymbol{1}$ 1. P. 2 11.
- 3. **П.П. Будников, В.Л. Балкевич, А.С. Бережной** Химическая технология керамики и огнеупоров // Под. ред. П.П. Будникова и Д.Н. Полубояринова. М.: Стройиздат, 1972. 552 с.
- 4. **Л.Л. Брагина, А.П. Зубехин, Я.Н. Белый** Технология эмали и защитных покрытий: Учеб. пособие // Под. ред. Л.Л. Брагиной, А.П. Зубехина. Харьков: НТУ «ХПИ»; Новочеркасск: ЮРГТУ (НПИ), 2003. 484 с.
- 5. **Т.В. Кузнецова, Н.В. Кудряшов, В.В. Тимашев** Физическая химия вяжущих материалов. М.: Высшая школа, 1989. 384 с.

- 6. **Бережной А.С.** Многокомпонентные системы окислов. К.: Наукова думка, 1970. 544 с.
- 7. **К. Парр, Ф. Симонен, В. Муха и др.** Алюминаткальциевые цементы для бетонов с пониженным содержанием цемента / Новые огнеупоры. $-2006. N \cdot 24. C. 135 141.$
- 8. **S. Klemme, J.C. van Miltenburg** The Heat Capacities and Thermodynamic Properties of $NiAl_2O_4$ and $CoAl_2O_4$ Measured by Adiabatic Calorimetry from T = (4 to 400) K // J. Chem. Thermodynamic. -2009. V. 41. P. 842 848.
- 9. **S. Mukhopadhya, K.T. Jacob** Phase Equilibria in the System NiO CaO SiO₂ and Gibbs Energy of Formation of CaNiSi₂O₆ // Metall Mater. Trans A. 1995/ V. 26 A. P. 2311 2315.
- 10. **Mukhopadhyay S**. Phase Equilibria in the System CaO CoO SiO₂ and Gibbs Energies of Formation of the Quaternary Oxides CaCoSi₂O₆, Ca₂CoSi₂O₇ and CaCoSiO₄ // Am. Mineral. 1996. V. 81. P. 963 972.
- 11. **В.И. Бабушкин, Г.М. Матвеев, О.П. Мчедлов-Петросян.** Термодинамика силикатов. М.: Стройиздат, 1986. 408 с.
- 12. **В.С. Горшков, В.Г. Савельев, Н.Ф. Федоров** Физическая химия силикатов и других тугоплавких соединений. М.: Высшая школа. 1988. 400 с.
- 13. **А.Г. Морачевский, И.Б. Сладков** Термодинамические расчеты в металлургии. М.: Металлургия, 1985. 136 с.
- 14. **К. Люпис** Химическая термодинамика материалов. М.: Металлургия, 1989. 503 с.
- 15. **О.Г. Кубашевский, С.В. Олкокк.** Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- 16. **Ю.Д. Третьяков** Твердофазные реакции. М.: Химия, 1978. 360 с.

- 17. **Д. Вуд, Л. Фрейзер** Термодинамика для геологов. М.: Мир, 1981. 160 с.
- 18. **Н.А. Ландия** Расчет высокотемпературных теплоемкостей твердых неорганических веществ по стандартной энтропии. Тбилиси: Изд. АН ГрузССР, 1962. 223 с.
- 19. **С.М.** Логвинков, Н.К. Вернигора, Г.Н. Шабанова и др. Равновесные комбинации фаз в субсолидусе системы CaO MgO Al_2O_3 // Огнеупоры и техническая керамика. 2006. N 2. C. 2 6.