Г.Н. ШАБАНОВА, докт. техн. наук, *С.М. ЛОГВИНКОВ*, канд. техн. наук, *Е.В. ХРИСТИЧ*, *О.Л. РЕЗИНКИН*, канд. техн. наук, НТУ «ХПИ»

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ОБРАТИМОСТИ ВЗАИМНЫХ ТВЕРДОФАЗНЫХ РЕАКЦИЙ СИСТЕМЫ SrO – BaO – TiO₂

У статті за допомогою різних методик розраховано вихідні термодинамічні константи: стандартна зміна ентальпія утворення сполук з елементів ΔH^{o}_{298} , стандартна ентропія S^{o}_{298} , рівняння залежності теплоємності від температури $C_p=f(T)$, для сполук системи SrO-BaO-TiO₂, що необхідно для проведення термодинамічного аналізу фазових рівноваг у зазначеній системі.

In article there were calculated output thermodynamic data: enthalpy ΔH^{o}_{298} , entropy S^{o}_{298} , dependence formula of heating capacity from temperature Cp = f(T) for some combinations of system $SrO - BaO - TiO_2$ by different methods. This is important for carrying out thermodynamic analysis of phase equilibriums in this system.

Термодинамический метод исследования позволяет охватывать всю совокупность сложных явлений, происходящих при химических взаимодействиях и фазовых превращениях. Для целенаправленного синтеза, прогнозирования свойств и процессов фазообразования сегнетокерамических материалов на основе системы SrO – BaO – TiO₂ требуется выполнение термодинамического анализа протекающих процессов, что возможно только при наличии исходных данных для всех участвующих в реакциях соединений: ΔH^{2}_{298} – стандартное значение изменения энтальпии образования соединений из элементов; S°₂₉₈ – энтропия соединения при 298 К; уравнение зависимости теплоемкости в температурном интервале существования соединения С_p= f(T). В связи с тем, что в справочной литературе отсутствуют термодинамические данные для некоторых соединений этой системы, нами рассчитаны исходные термодинамические константы для титанатов бария и стронция.

К настоящему времени накоплен значительный объем данных по конденсаторным сегнетокерамическим материалам на основе титаната бария. Однако, возможности этих материалов не исчерпаны, что обусловлено неисследованностью гетерофазных многокомпонентных материалов. В сечении SrTiO₃ – BaTiO₃ установлена возможность образования непрерывных перовскитовых твердых растворов [1]. Температуры плавления соединений системы определены для Ba₂TiO₄ – 1820 °C, BaTiO₃ – 1610 °C (плавятся конгруэнтно); BaTi₂O₅ – 1315 °C, BaTi₄O₉ – 1465 °C (плавятся инконгруэнтно). Титанат бария имеет 3 полиморфные модификации: тетрагональную, стабильную при комнатной температуре, которая в ходе фазового перехода при 120 °C превращается в кубическую форму, стабильную до 1460 °C, после чего последняя переходит в гексагональную модификацию, стабильную до температуры плавления. Тетратитанат бария BaTi₄O₉ был впервые получен Сканави [1]. Ортосиликат стронция Sr₂TiO₄, плавящийся при 1860 ± 20 °C, существует в двух полиморфных модификациях с точкой фазового перехода при температуре 1600 °C. Соединение Sr₃Ti₂O₇ устойчиво только до 1640 °C и при более высокой температуре разлагается на Sr₂TiO₄ и SrTiO₃, который плавится конгруэнтно при 2040 ± 20 °C.

Известны термодинамические константы соединений $BaTiO_3$, $BaTi_2O_5$, $BaTi_4O_9$, Ba_2TiO_4 , $SrTiO_3$, $Sr_3Ti_2O_7$, их свойства изучены достаточно [4, 7, 8]. В литературе нами не обнаружены исходные термодинамические константы для соединений: Ba_3TiO_5 , $Ba_3Ti_2O_7$, Sr_3TiO_5 , Sr_2TiO_4 , а также уравнения зависимости теплоемкости от температуры для этих соединений.

В связи с этим произведен расчет исходных термодинамических величин с использованием известных методик. Стандартные значения изменения энтальпий образования ΔH°_{298} титанатов бария и стронция определялись с привлечением методик, изложенных в работах [2, 3]. Результаты расчетов представлены в таблице 1.

Проведены расчеты стандартных энтропий для соединений $BaTi_2O_5$, $BaTi_4O_9$, $Sr_3Ti_2O_7$ согласно полуэмпирическим формулам Истмена и Яцимирского. Возможность использования таких методик для данного типа соединений указывается в работе Бережного А.С. [4]. Кроме того, были проведены расчеты стандартных энтропий соединений по формулам Вуда и Фрейзера [4], согласно которым энтропию соединения можно оценивать по совокупности значений энтропий для слагающих минерал оксидов с учетом эмпирической поправки на разницу в объемах. Средние значения по результатам этих расчетов приведены в таблице 1.

Расхождения полученных величин незначительны, что позволяет, в связи с отсутствием справочных данных по этим соединениям, использовать их в первом приближении для дальнейших расчетов.

Таблица 1

Соединение	- ΔH [°] ₂₉₈ , кДж/моль	Источник	S° ₂₉₈ , Дж/моль [.] К	Источник
BaO	558,15	[9]	70,29	[9]
SrO	590,36	[9]	54,39	[9]
ТіО ₂ –рутил	943,49	[9]	50,21	[9]
BaTiO ₃	1663,56	[9]	105,94	[8]
BaTi ₂ O ₅	2662,09	[7]	173,55	[7]
BaTi ₄ O ₉	4752,72	[7]	271,15	[7]
Ba ₂ TiO ₄	2250,99	[9]	188,43	[9]
Ba ₃ TiO ₅	2733,1	[7]	263,7	[7]
Ba ₃ Ti ₂ O ₇	3725,03	[7]	316,06	[7]
SrTiO ₃	1677,37	[9]	101,00	[8]
Sr ₂ TiO ₄	2283,21	[8]	156,05	[8]
Sr ₃ TiO ₅	2853,55	[7]	212,34	[7]
Sr ₃ Ti ₂ O ₇	3776,14	[7]	243,7	[7]

Термодинамические константы соединений системы SrO – BaO – TiO₂

В основе метода Ландия Н.А. [6] лежит связь между теплоемкостями твердых веществ и энтропиями. В соответствии с указанным методом были определены уравнения зависимости теплоемкости от температуры $C_p = f(T)$ рассматриваемых веществ.

Расчет уравнений зависимости теплоемкости от температуры титанатов бария и стронция производился по приведенной в работе [6] схеме (XII), как для соединений имеющих полиморфные превращения. При отсутствии данных о температуре плавления некоторых соединений для всех формул (согласно методике [6]) бралась максимальная температура, при которой нахождение соединения в твердом состоянии не вызывает сомнений. Точность расчета понижается на 3 - 4 %.

Уравнения вида:

$$C_p = a + b \cdot 10^{-3}T + c \cdot 10^{5}T^{-2}$$
,

составлялись отдельно для низкотемпературной ветви (298 – T_п) и для высокотемпературной ветви (T_п – T_{пл}). Дальнейшие расчеты производились по данным для низкотемпературной модификации. Так как при планируемых в дальнейших экспериментах температурах термообработки не достигается температура фазовых переходов, то уравнения имеют вид (Дж/мольК):

для Ba ₃ TiO ₅ :	$C_p = 43,45 + 0,016T - 298000T^{-2}$	(298 – 1673 K)
для Ba ₃ Ti ₂ O ₇ :	$C_p = 61,43 + 0,0131T - 611000 T^{-2}$	(298 – 1673 K)
для Sr ₃ TiO ₅ :	$C_p = -90 + 0,0657T$	(298 – 1833К)

Таблица 2

τ/	•	с с с	\sim	\mathbf{D}	T 'O
к	ΟΠΟΤΩΠΤΓΙ ΜΌΔΟΠΕΠΙΜΙ ΤΕΠΠΟΕΜΙΟΟΤΙ	ΓΟΘΠΙΙΟΕΙΙΙΙ ΟΙΟΤΕΜΙΙ Ν	() _	Rath	_ [1().
1/		сослинсний системы ы	\mathbf{U}^{-}	Dav	-1102
			-		- 2

Соединение	$C_p = f$	f(T), Дж/мс	оль·К	Uutanpan tampanatun K	Истонник
	a	$b \cdot 10^3$	$- c \cdot 10^{-5}$	интервал температур, к	ИСТОЧНИК
BaO	53,304	4,35	8,301	298 - 1270	[9]
SrO	51,63	4,69	7,56	298 - 1270	[9]
TiO ₂	53,304	4,35	8,301	298 - 1800	[9]
BaTiO ₃	84,5	44,35	—	298 - 1889	[9]
BaTi ₂ O ₅	189,2	83,68	34,396	298 - 1593	[7]
BaTi ₄ O ₉	291,75	68,62	64,14	298 - 1713	[7]
Ba ₂ TiO ₄	146,15	28,03	_	298 - 2133	[9]
Ba ₃ TiO ₅	43,45	16,00	2,98	298 - 1673	[7]
Ba ₃ Ti ₂ O ₇	61,43	13,10	6,11	298 - 1673	[7]
SrTiO ₃	118,11	8,54	19,16	298 - 2313	[9]
Sr ₂ TiO ₄	360,87	- 64,43	—	298 - 2133	[7]
Sr ₃ TiO ₅	- 90,28	65,7	_	298 - 1833	[7]
Sr ₃ Ti ₂ O ₇	243,7	68,62	279,07	298 - 1853	[7]

Графическая интерпретация зависимости теплоемкости от температуры представлена на рис. 1 и рис. 2. Как видно из представленных результатов зависимость $C_p = f(T)$ имеет линейный характер, для BaTiO₃, Ba₂ TiO₄, Sr₃Ti₂O₇, SrTiO₃, Sr₂TiO₄; Ba₃TiO₅, Ba₃Ti₂O₇, Sr₃TiO₅.

Для установления субсолидусного строения и прогнозирования стабильности гетерофазных комбинаций системы SrO – BaO – TiO₂ были выполнены термодинамические расчеты для модельных твердофазных реакций..

Термодинамические расчеты твердофазных реакций заключались в определении значений изменения свободной энергии Гиббса (ΔG) в зависимости от температуры и проводились в соответствии с методикой, изложенной в работе [8]. Для расчета зависимости $\Delta G = f(T)$ была разработана и применена компьютерная программа расчета энергии Гиббса с помощью приложения Microsoft Exel. Результаты термодинамических расчетов твердофазных реакций в системе SrO – BaO – TiO₂ представлены в табл. 3.

системы $SrO - BaO - TiO_2$ от температуры: 1 - Ba_3TiO_5 ; 2 - $Ba_3Ti_2O_7$; 3 - Sr_3TiO_5 .

Таблица 3

Результаты термодинамических расчетов твердофазных реакций в системе SrO - BaO - TiO₂

\mathcal{N}_{0}	Доокции			$\Delta 0$	Э, кДж/мол	ь при Т, К			
Π/Π	і салция	800	900	1000	1100	1200	1300	1400	1500
1.	$S_3T_2 + 2B_2T_2 \rightarrow 3ST + 3B_2T$	-617,25	-648,079	-683,476	-723,056	-766,488	-813,49	-863,81	-917,21
2.	$3S_2T + 2B_3T_2 \rightarrow 2S_3T_2 + 3B_2T$	-3070,02	-3089,00	-3109,53	-3131,69	-3155,59	-3181,4	-3209,1	-3238,99
3.	$B_3T + 3S \rightarrow 3B + S_3T$	2,117	11,074	20,915	31,514	42,764	54,574	66,869	79,578
4.	$2S_3T + B_3T \rightarrow 3B + 3S_2T$	-436,021	-562,541	-701,176	-850,376	-1175,87	-1175,6	-1349,7	-1530,4
5.	$B_3T_2 + 3ST \rightarrow S_3T_2 + 3BT$	-64,487	-89,217	-116,783	-147,012	-179,775	-214,92	-252,53	-292,37
6.	$2B_3T + S_2T \rightarrow 3B_2T + 2S$	-47,929	-41,736	-37,818	-36,079	-36,438	-38,828	-43,190	-49,483
7.	$3ST + B_2T \rightarrow 2BT + S_3T_2$	162,758	158,547	149,969	143,010	135,645	127,85	119,59	110,83
8.	$2S_3T_2 + B_2T \rightarrow 3S_2T + 2BT$	-384,422	-402,465	-423,915	-448,294	-475,178	-504,19	-535,01	-567,34
9.	$\rm S_2T + 2B \rightarrow 2S + B_2T$	23,976	43,175	63,914	85,939	109,04	133,05	157,82	183,23
10.	. $B_3T + 3S_2T \rightarrow 2S_3T_2 + 3B$	339,2	341,326	344,7	349,009	353,96	359,29	364,77	370,16
11.	$2B_3T_2 + S_3T_2 \rightarrow B_2T + 3ST$	-617,250	-648,079	-683,479	-723,056	-766,488	-813,48	-863,81	-917,25
12.	$2BT + S_3T_2 \rightarrow B_2T + 3ST$	-162,758	-156,547	-149,969	-143,01	-135,645	-127,84	-119,58	-110,83
13.	$2BT_2 + 3S_3T_2 \rightarrow B_2T + 9ST$	-518,906	-2592,023	-2557,31	-2520,17	-2480,70	-2438,9	-2394,9	-2348,7
14.	$2BT_4 + 7S_3T_2 \rightarrow B_2T + 21ST$	-1203,18	-1122,77	-1039,68	-954,17	-866,35	-776,26	-863,90	-589,21
15.	$2S_3T + B_3T \rightarrow 3 B + 3S_2T$	-436,021	-562,541	-701,176	-850,376	-1008,87	-1175,6	-1349,7	-1530,4
16.	$3S_2T + 3B_2T \rightarrow 2B_3T + 2S_3T_2$	15841,08	15898,9	15963,7	16034,6	16110,9	16192,0	16277,4	16366,5
Пылле	имих йинендески или записти	UTER VITADE	с попон йни		уф веннение	нонцес ема	$\mathbf{P} = \mathbf{R}_{\mathbf{a}} \mathbf{O}$	T:C:T	

oru. 11U₂, S -BaU, I примечание: при записи уравнении химических реакции использована сокращенная форма записи: В - Все термодинамические константы, полученные в данной работе расчетным путем, дают приближенные результаты из-за погрешностей соответствующих методик. По этим результатам можно составить представление о качественной стороне протекания процессов, более точные результаты могут дать расчеты термических констант, определенные в дальнейших исследованиях непосредственно в результате экспериментальных измерений.

Из анализа результатов термодинамических расчетов значений энергии Гиббса твердофазных реакций системы SrO – BaO – TiO₂ вытекает, что комбинации фаз и соответствующие конноды: SrTiO₃ – Ba₂TiO₄; Sr₃Ti₂O₇ – Ba₂TiO₄; Sr₂TiO₄ – BaO; Sr₂TiO₄ – Ba₂TiO₄ должны быть стабильны в соответствии с анализом значений энергии Гиббса для реакций № 1, 2, 4, 16 (табл. 3). Из проведенного геометро-топологического анализа было установлено, что конноды Sr₃TiO₅ – BaO; SrTiO₃ – Ba₃Ti₂O₇; SrTiO₃ – BaTiO₃; SrTiO₃ – BaTi₂O₅; SrTiO₃ – BaTi₄O₉, однозначно замыкаются в указанных комбинациях.

Таким образом, в результате произведенных расчетов нами установлены исходные термодинамические константы для соединений системы SrO – BaO – TiO₂, отсутствующие в справочной литературе и необходимые для проведения термодинамического анализа фазовых равновесий в отмеченной системе при создании новых материалов с заданными сегнетоэлектрическими свойствами.

Список литературы: 1. *Торопов Н.А.* Диаграммы состояния силикатных систем. // М.- Л.: «Наука». 1965. – 546 с. 2. *Морачевский А.Г., Сладков И.Б.* Термодинамические расчеты в металлургии. // М.: Металлургия, 1985. – 136 с. 3. *Barany R., King E.G., Tood S.S.* Heat of formation of crystalline silicates of strontium and barium // J. Amer. Chem. Soc. – 1957. – Vol. 79. – Р. 3639 – 3641. 4. *Бережной А.С.* Многокомпонентные системы окислов. // К.: Наукова думка, 1970. – 541 с. 5. *Вуд Д., Фрейзер Л.* Термодинамика для геологов. // М.: Мир, 1981. – 180 с. 6. *Ландия Н.А.* Расчет высокотемпературных теплоемкостей твердых неорганических веществ по стандартной энтропии // Тбилиси: Изд. АН ГрузССР, 1962. – 223 с. 7. Шабанова Г.Н., Христич Е.В., Логвинков С.М., Васютин Ф.А., Лисачук Г.В., Проскурня Е.М., Леденев В.В. Расчет термодинамических характеристик некоторых соединений системы SrO – BaO – TiO₂. // Вісник Національного технічного університету "Харківський політехнічний інститут". – Харьков: НТУ «ХПИ». – 2006. – № 43. – С. 116 – 120. 8. *Глушко В.П.* Термические константы веществ. // М.: Изд. АНСССР, Вып. IX, 1979. – 574 с. 9. Бабушкин В.И., Матвеев Г.М., Мчедлов-Петросян О.П. Термодинамика силикатов. // М.: Стройиздат, 1986. – 408 с.

Поступила в редколлегию 07.04.08