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1. Introduction

An experience in solving a number of applied problems 
demonstrates that a road to the result will be more effi-
cient if one considers the “inner” projection nature of such 
problems. Sometimes, one manages to reduce a “parametric 
dimensionality” of problems by mapping a certain geometric 
object, stipulated by the problem statement, onto a coordi-
nate hyper-plane in the same parameter space. In this case, 
computations, associated with the conversion of graphic 
information about the image representation, allow obtaining 
an effective solution for the original problem. Strict scientific 
explanation for this phenomenon is to be found in the math-
ematical theories, in particular, in the disaster theory [1].

In connection to this, there came an idea to create a graphic 
technology for calculating the pendulum mechanical oscillato-

ry systems in order to provide for a non-chaotic (that is, such 
that satisfies a certain technology) character of the motion 
of their elements through a proper choice of parameters. The 
problem on calculating the dynamics of pendulum system is a 
traditional subject of research in theoretical mechanics, where 
the simplicity of setting a task is combined with the complexity 
of its solution [2]. The designs of pendulum mechanical systems 
are very different. Lengths of elements may periodically vary, 
suspension points can vibrate, and elastic elements may also be 
applied. At arbitrary values of parameters and initial conditions 
for the initiation of load motion, oscillations will be discovered 
in chaotic trajectories. The complexity of research into pendu-
lum systems is explained by the need to take into account qual-
itatively different parameters – metric, angular, weight, as well 
as rigidity coefficients of the spring elements. That is why it is 
a relevant direction to develop and formalize a procedure for 
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choosing the combination of parameters and initial conditions 
for the initiation of oscillations, which would provide for the 
technological trajectory of load in the implemention of specific 
designs of pendulum systems.

In order to solve this problem, we propose in this work to 
apply geometric apparatus for mapping onto the phase plane 
the integral curves of second order Lagrange differential 
equations that describe pendulum mechanical oscillations. 
The key provision of this idea is constructing a second or-
der Lagrange differential equation, its integration with the 
required initial conditions and selection of the solution that 
would meet the necessary requirements to an oscillatory 
system [3]. We shall note that the very process of selecting 
parameters and initial conditions is the least examined in 
terms of its formalization [4].

In the present paper we consider those model problems in 
which oscillatory systems are conservative. In other words, 
here we tackle only those idealized systems in which the 
reserve of mechanical energy in the process of oscillations 
remains constant [5].

2. Literature review and problem statement

Effectively solving the initial problem can be realized by 
the computations associated with the conversion of graphic 
information about the image of mapping since the notion of 
mapping permeates many fields of natural sciences with a 
typical example being the disaster theory [1]. However, in 
the implementation of such an approach, techniques to map 
the objects are still insufficiently developed, for example, in 
descriptive geometry. At the intuitive-applied level, mapping 
is defined by the rule (algorithm), by which each element 
from some assigned set is matched with a certain element 
of another assigned set. A “projection” character of relation 
between the surface of equilibrium and bifurcation set in the 
disaster theory stimulated the search for similar situations 
by the means of graphical computer technologies.

It is advisable to include into the set of projection methods 
a technique for analysis of oscillations at the qualitative level 
[5], where graphic information (integral curves and phase 
trajectories) has not been used to a proper degree, which is 
characteristic for this class of problems. In a general case, the 
following three stages of solution are typically considered: 
determining the specific points that match the equilibrium 
states of an oscillatory system, construction of phase portraits 
of the system with the controlling parameter values within 
the range of special points, as well as finding the separatrices, 
which run through special points, by using the integral equa-
tion of system energy when the kinetic energy equals zero 
[6]. By this information, not sufficiently formalized for the 
construction of algorithms [7], they usually determine the 
parameters and initial conditions, which would provide for the 
technological trajectories of pendulum oscillations [8]. But for 
practical implementations, it is necessary to employ an engi-
neering technique for determining non-chaotic oscillations of 
pendulum systems. For example, a peculiarity for a significant 
number of pendulum systems is a movable point of suspension 
[9, 10], as well as a combined character of oscillations [11, 12]. 
And for all of these, as well as other variants of oscillatory sys-
tems, it is necessary to be able to determine the non-chaotic 
trajectories in the oscillations of their loads. 

That is why, in practice, the artificial (engineering) 
means are used to find the non-chaotic trajectories. For 

example, a computation of initial angles for the double pen-
dulum implies the following [13]:

1) the equation is built, where the left part is the expres-
sion of the system’s initial energy at unknown initial angles 
of deviation; the right part are the numerical values of di-
mensionless starting energy;

2) by assigning the first angle, they solve the equation 
relative to the second angle;

3) the assigned first and the found second angles are 
fitted to the initial conditions of the system of differential 
equations of the system motion. This system of equations 
is solved and some phase portrait of the system is obtained;

4) by varying the angle values so that the closed lines are 
formed on the phase portrait, they receive the values of both 
angles that meet the original criteria for establishing the 
periodic mode of motion.

It is necessary to complete all the points in the algorithm, 
initially at a low value of starting energy, then, by assigning 
its increment, to conduct iterations with the subsequent val-
ues. The disadvantages in the method of article [13] include 
compulsory stages in the selection of parameters without 
visualizing the intermediate results that substantially in-
creases complexity in the selection of variants.

Development of projection graphic computer technolo-
gies for examining the non-chaotic oscillations of pendulum 
systems is the subject of the present work. In our case, much 
attention is paid to the visualization of intermediate results 
in the computations.

3. The aim and tasks of the study

The aim of this work is to develop a method to study 
conditions for the existence of non-chaotic load oscillation 
trajectories in the pendulum mechanical conservative sys-
tems. This will make it possible to define the parameters for 
a certain pendulum mechanism, which would provide for the 
oscillation of its load along the non-chaotic trajectory.

To achieve the set aim, the following tasks are to be 
solved:

– to propose a notion of the focus-line of parametric 
family of curves and a technique for the projection focusing, 
which is based on this concept;

– to construct integral curves in the phase space based 
on the numerical solution of second order Lagrange differen-
tial equations, which describe the types in the oscillations of 
pendulum systems;

– to determine the critical value of pendulum oscillation 
parameter by using the graphic notion of projection focusing 
of phase trajectories in the solutions for second order La-
grange differential equations;

– to give examples of determining the parameters of some 
pendulum systems, which would provide for the non-chaotic 
oscillation trajectories of their loads.

4. Materials and methods for examining the conditions of 
the existence of non-chaotic load oscillation trajectories 

in the pendulum mechanical conservative systems

4. 1. Basic concepts in the mapping of projection fo-
cusing

Here are the basic concepts in the mapping of projection 
focusing [14]. 
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Assume that a parametric family of lines L is assigned in 
the Cartesian coordinate system Oxy, which is described by 
equations:

x=x(t); y=y(t) or F(x, y, C)=0,

whose elements do not cross outside the rectangle:

a<x<b; c<y<d.

Here C is the parameter that controls a geometric shape 
of the family elements (i.e. a controlling parameter).

In order to explore the properties of family of lines L that 
are used in practice, the means of differential computation 
are usually employed. A typical example is defining the en-
velope of family of lines L as one of the properties of a para-
metric family [15]. But geometric properties of the family of 
lines L have not been investigated yet, which are associated 
with determining the saturation (or density on the plane) of 
mapping the family of lines L. A property of saturation in the 
image of the family of lines L is characterized by the number 
of conditional points in the Oxy plane (we shall denote them 
as “pixels”) that make up the images built by the means of 
computer graphics [16]. It can be seen at the intuitive level 
that Fig. 1, a shows a family of lines, which is more saturated 
with points than that in Fig. 1, b.

 
 
 
 
 
 
 
 
 
 
 
 
a 

 
 
 
 
 
 
 
 
 
 
 
 
b 

Fig. 1. Images of elements of a family of lines, which have 
different saturation: a – larger saturation; b – lower 

saturation

In order to formalize the notion of saturation, one should 
assume that the image of the family of lines L is built on the 
computer monitor screen in the form of a discrete set of points, 
which in this case had been agreed to be denoted as pixels.

Then the measure of saturation is the number of pixels 
by which the family of lines L was visualized with accuracy 
acceptable for practice. 

Thus, for the parametric family of lines, described by 
equations:

x=x(t); y=y(t) або F(x, y, C)=0,

it is necessary to compute such a value of controlling param-
eter C (that changes within the range of u<C<v) at which 
the saturation of the image of the family of lines is minimal. 
We shall denote the found value of the parameter as critical 
and designate Сc. 

Definition. We shall denote as a focus-line that element 
Lc in the family of lines, which matches critical value of 
parameter Сc. 

The term “focus-line” is chosen considering the fact that 
the process of search for the image of the family of lines with 
minimum saturation can be compared to the convolution, 
gathering in a heap, “image sharpening” – in other words, 
focusing. 

Consider the family of lines, described by equations:

( ) ( )x cos 2C t sin t C ;= + + ( ) ( )y 0,5sin 3 tC cos t C ,= + −  (1) 

where parameter C changes within 3.1<С<3.9. 
Fig. 2 shows elements of the family of curves for some 

values of C. 
Fig. 2 on the left shows variants, among which one will 

probably be close to the critical value of parameter C.

 
 
 
 
 
 
 
 
 
 

a                                                b 
 
 
 
 
 
 
 
 
 
 

c                                                 d 
 
 
 
 
 
 
 
 
 
 

e                                                 f 

Fig. 2. Elements of family (1) dependent on parameter C: 
a – at C=3.12; b – at C=3.4; c – at C=3.6; d – at C=3,67; 

e – at C=3.8; f – at C=3.9
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In order to solve the assigned problem on computing the 
value of C, which will ensure minimum saturation in the im-
age of family of lines, we built an universal algorithm. 

The input parameters are:
– equation of parametric family of curves:

x=x(t); y=y(t);

– a number of frames in animation S;
– boundaries of change in the value of parameter Cmin 

and Cmax;
– a number of points on curve W;
– a number of pixels along vertical N and horizontal M.
The variant was calculated at parameters S=150; 

W=1500; N=M=400. 
As a result, we constructed a graph of dependence of the 

number of points on the image of the family of lines on the 
values of parameter C. 

Fig. 3 shows a graph of dependence of the number of 
points on the image of the family of lines (1) on the values of 
parameter C (within the range from Сmin=3.1 to Cmax=3.9). 
A global minimum of the number of points Np=4896 is 
achieved at value C=3.3986. 

Fig. 4 shows a family element (1) at critical value of pa-
rameter C=3.3986.

Fig. 3. Graph of dependence of the number of points on the 
image of the family of lines (1) on the values of C

Fig. 4. Family element (1) at critical value of parameter 
C=3.3986

Thus, the value of C was calculated, which will pro-
vide for the minimum saturation of the image of family of 
lines (1).

4. 2. Explanation of the idea of projection focusing
Let us proceed to the explanation of notion of the idea 

about projection focusing [17]. 
Assume that in the Cartesian coordinate system Oxyt a 

parametric family of lines L is assigned, described by equa-
tions:

x=x(t); y=y(t),

whose projection Lp onto the Oxy plane does not cross out-
side the rectangle:

a<x<b; c<y<d. 

Here C is the parameter that controls a spatial geometric 
shape of the family elements (i. e. a controlling parameter). 

At the change of parameter C within the range 

u<C<v, 

the saturation of the image of projection Lp in the Oxy 
plane. 

For the parametric family of lines L, described in para-
metric space {x, y, t} by equations:

x=x(t); y=y(t), 

it is necessary to compute such value of controlling param-
eter C (that changes within the range u<C<v) at which 
saturation of the image in the Oxy plane of projection Lp of 
family of lines is minimal. We shall denote the found value of 
parameter S as critical and designate by Сc. 

It is obvious that the critical value of parameter Сc is 
matched with the focus-line of family of projections Lp. 

Definition. We shall denote as projection focusing a 
computing process for determining the critical value of 
parameter Сc, which will enable finding the focus-line of 
projection family Lp. 

Consider a family of lines, described by equations:

( )( ) ( )2x exp cos Ct 5sin t C ;= + +

( )( ) ( )y exp sin Ct 2,5cos t C ,= + −    (2) 

where parameter C changes within the range 

2.2<С<4.5.

We compiled a program for the construction in space 
Oxyt of family elements (2) and their projections onto 
the Oxy plane depending on the values of parameter C.  
Fig. 5 shows some of the elements of family (2). By using 
the program for determining the critical value of parame-
ter, we compute C=3. Respective focus- curve is shown in  
Fig. 5 at C=3.

Thus, we calculated the value C=3 that will provide for 
the minimum saturation of image in the projection of family 
of lines (2).
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Fig. 5. Image of some elements of family (2) depending on 
the parameter C: a – at C=2.35; b – at C=2.66;  

c – at C=2.85; d – at C=3; e – at C=3.27; f – at C=3.5;  
g – at C=3.77; h – at C=4; i – at C=4.46

4. 3. Application of projection focusing for determin-
ing the non-chaotic oscillation trajectories of pendulum 
systems

Next, we shall consider how to apply the projection fo-
cusing to solve the problems on determining the non-chaotic 
oscillation trajectories of pendulum systems. 

Let us enumerate conditions for the idealization of exam-
ples of the examined problems:

– parameters of the oscillatory system and initial condi-
tions are assigned in conditional numerical units; 

– oscillations of pendulums take place in the vertical 
plane; 

– all elements of the system do not have thickness, are 
weightless and do not deform; supports in the nodes and air 
resistance in the course of oscillations are absent; 

– an oscillatory system is conservative, that is, the re- 
serve of mechanical energy in the process of oscillations 
remains constant (losses of energy are missing). We believe 
that the process of energy scattering proceeds slowly com-
pared with the characteristic time scale in the system. This 
exerts a weak impact on the character of motion.

Example  1. Determining the non-chaotic oscillation 
trajectories of pendulum with a movable suspension point. 

Mathematical pendulums with a movable suspension 
point are convenient models for testing the methods of 
exploring the oscillating processes. Of interest are the geo-
metric shapes in the trajectories of moving along the plane 
(center) of load [18]. They illustrate the solutions of the 
corresponding differential equations that can be used by 
analogy in the problems similar in content [19].

Here is a graphic computerized method for choosing 
parameters’ values to obtain the non-chaotic oscillation 
trajectories of the load in pendulums with a movable sus-
pension point. 

First, consider the case of oscillation of mathematical 
pendulum whose suspension point moves along the horizon-
tal axis Ox. In this case, to describe the dynamics of motion, 
it is possible to apply [9] differential equation:

( ) ( )
2 2

2 2

d d
L v(t) f(t) cos v(t) g sin v(t) 0.

dt dt

   
+ + =      

 (3)

The following designations are adopted in formula (3): 
v(t) is the function of the magnitude change in the angle of 
pendulum deviation; L is the length of the pendulum; f(t) is 
the law of change in the position of pendulum’s suspension 
point along the Ox axis; g=9,81. 

We shall solve equation (3) by the Runge–Kutta numer-
ical method with initial conditions:

v(0)=v0; v¢(0)=dv0.

In order to determine the values of parameters v0 and 
dv0, which would provide for the non-chaotic trajectory 
of pendulum load motion, we shall employ the method of 
projection focusing. For this purpose, by using the nu-
merical method with the selected initial conditions and 
with a regard to function f(t), we solve equation (3). Next, 
we build the image of an integral curve in phase space  
{v, dv, t} depending on the value of “controlling” parame-
ter; this may be, for example, the length of pendulum L. At 
arbitrary values v0 and dv0, there will form a “confused” 
integral curve in the phase space (Fig. 6, a). Let us project 
it onto phase plane {v, dv}, where we also observe a respec-
tive “confused” phase trajectory. In the case of change 
in the “controlling” parameter L, the character of phase 
trajectory must also change. At a certain critical value 
L=L0, the character of phase trajectory will change at the 
qualitative level – it becomes the “natural” curve. In the 
phase plane, under the mode of computer animation, one 
may observe an optical-like effect of the image sharpening 
of confusion in the phase trajectories (Fig. 6, b). This pro-
cess of finding the critical values of parameters is named 
a projection focusing.

Taking into account the critical value of L0 when solving 
differential equation (3) causes the emergence of point co-
ordinates in plane {x, y}, which must be arranged along the 
non-chaotic trajectory. 

For this purpose, the point coordinates along the load 
trajectory should be calculated according to formulas:

( )x(t) L sin v(t) f(t);= +

( )y(t) L cos v(t) .=

In this formula, v(t) denotes the approximated solution 
for differential equation (3). 
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b 
 

Fig. 6. Phase trajectories as projections of integral curves:  
a – for an arbitrary value of “controlling” parameter L;  

b – for a critical value of “controlling” parameter L0

Here is an example of solving the equation (3) with the 
following conditions:

v0=0; dv0=0; f(t)=sin(7t)/2. 

If one changes parameter L, for example, within the 
range 2£L£3 at step h=0.2, then we shall obtain a set of 
integral curves, one of which is shown in Fig. 7, a. 

Critical value of the parameter will be obtained as a 
result of projection focusing at value L0=2.456, that corre-
sponds to Fig. 6, b, 7, a.

Fig. 7, b shows example of geometric modeling of the 
pendulum oscillation process and construction of a non-cha-
otic trajectory. Fig. 8 shows other found variants of the non- 
chaotic trajectories.

a                                                b 

Fig. 7. Example of modeling the pendulum oscillations at 
parameters v0=0; dv0=0; L=2.456; f(t)=sin(7t)/2:  

a – phase trajectory; b – a frame of the animation scheme of 
pendulum oscillation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 
 
 
 
 
 
 
 
 
 
 
 
 
 

b  
Fig. 8. Example of modeling the pendulum oscillation at 

parameters v0=0; dv0=0; f(t)=sin(5t)/2: a – at L=2.496333; 
b – at L=1.64

Example  2. There are a significant number of publica-
tions, which address mathematical pendulums with a mov-
able suspension point. Among them, a prominent place is 
taken by articles that tackle a variety of manifestations in 
the phenomenon of a certain type of pendulums – the Kapit-
za pendulums [10]. The most interesting is that the point of 
absolutely unstable equilibrium for a mathematical pendu-
lum may turn to be a point of stable equilibrium for the Ka-
pitza pendulum. In this case, they also consider the problems 
on parametric resonance when the lower state of equilibrium 
is not stable and the amplitude of small deviations of the 
pendulum increases over time. There are interesting effects 
when, at a large amplitude of forced oscillations, chaotic re-
gimes may be realized in the system.

These studies would be advisable to supplement with a 
graphic visualization of the results of solving the equations 
that describe dynamics in the oscillations of pendulums 
with a movable suspension point. It is necessary to visualize 
the trajectories of load oscillations in order to detect the 
non-chaotic trajectories among them.

Let us consider the oscillations of mathematical pen-
dulum whose suspension point moves along the vertical  
axis Oy. To describe the dynamics of motion of the pendu-
lum, we shall employ [9] differential equation:

( ) ( )
2

2
2

d
L v(t) g Aw cos(wt) sin v(t) 0.

dt

 
+ + =  

 (4)
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The following designations are adopted in formula (4): 
v(t) is the function of magnitude change in the angle of pen-
dulum deviation; L is the length of the pendulum; cos(wt) is 
the law of change in the position of suspension point of the 
pendulum along the Оy axis; A is the amplitude of oscilla-
tions; w is the frequency of oscillations; g=9,81. 

We shall solve equation (4) by the Runge-Kutta numeri-
cal method with initial conditions:

v(0)=v0; v¢(0)=dv0. 

To determine the values of parameters A and w, which 
would provide for the non-chaotic trajectory of the pendu-
lum load motion, we shall apply the method of projection 
focusing. 

For this purpose, find the solution of equation (4) for 
L=0.1; w=150 and with initial conditions:

v0=p/20; dv0=0.

Employing the method of projection focusing, we shall 
obtain critical values of oscillation amplitude A that ensure 
the non-chaotic load oscillations. 

Taking into account the critical value of parameter A in 
the process of solving differential equation (4) will cause the 
emergence of point coordinates in plane {x, y}, which must be 
arranged along the non-chaotic trajectory. 

For this purpose, coordinates of the points along the load 
trajectory should be calculated by formulas:

( )x(t) L sin v(t) ;=

( )y(t) L cos v(t) A cos(wt).= +

In this formula, v(t) denotes the approximate solution of 
differential equation (4). 

Fig. 9, a–c shows examples of the geometric modeling of 
the Kapitza pendulum load trajectories for the found values 
of oscillation amplitude (frames of the animation scheme of 
the oscillation process are presented). Fig. 9, d shows an ex-
ample of the load chaotic oscillations for comparison.

a                       b                       c                       d 
 

Fig. 9. Geometric modeling of the Kapitza pendulum 
trajectories: a – for A=0.0105; b – for A=0.01469;  

c – for A=0.01245; d – for A=0.011

Fig. 10 shows phase trajectories that match the oscilla-
tion cases of Fig. 9.

 
 
 
 
 
 
 
 
 
 
 

a                                                 b 

 
 
 
 
 
 
 
 
 
 
 
c 

Fig. 10. Phase trajectories:  
a – for A=0.0105; b – for A=0.01469; c – for A=0.01245

Thus, in order to obtain the non-chaotic trajectories of 
load oscillations for a pendulum with a movable suspen-
sion, the selection of parameters can be carried out based 
on the graphic method of projection focusing. These tra-
jectories allow us to analyze the character of the obtained 
solutions. 

Example 3. Determining the non-chaotic trajectories in 
pendulum oscillations of the Atwood machine’s load.

In order to verify the laws of kinematics and dynamics, 
the Atwood machine is used, which consists of a vertical rod, 
atop of which is a light pullet mounted so that it is capable of 
rotating at little friction. A string runs over the pulley with 
the attached loads of identical masses M. Motion of this sys-
tem of loads causes additional load of mass M, which is added 
to one of the basic loads.

If the loads are identical, then potential energy of the 
system is not dependent on their height as the decrease in 
potential energy of one load leads to equivalent growth in 
the potential energy of another one. When loads are dif-
ferent, then the change in potential energy of the system is 
determined by the position of overload with mass m. 

But there is another possibility to bring the specified sys-
tem of loads out of equilibrium through altering its potential 
energy. For this purpose, one of the loads must be assigned 
with pendulum oscillations. Fig. 11 shows in the Cartesian 
coordinate system {x, y} a schematic of the Atwood machine 
with a pendulum, where the sum of segments:

½ОА½+½ОВ½+½ВС½,

(that is the length of the string) must be constant. Then 
asymmetric weight gain due to the acceleration of pendulum 
will break initial equilibrium in the system and, through pe-
riodic motions of the pendulum, there will form a certain tra-
jectory in the pendulum load displacement. For the applied 
problems, it is necessary to explore the specified variety of 
kinematic curves.
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Fig. 11. Schematic of the Atwood machine with a pendulum

To describe the action of the Atwood machine with 
pendulum movements, they use [11] formulas for kinetic and 
potential energy:

2 2
2u v

K 0,5(1 w) 0,5u ;
t t

∂ ∂   = + +      ∂ ∂

( )P w cos(v) gu.= −     (5)

The following designations are adopted in expressions 
(5) (Fig. 11): u(t) is the function that describes pendulum 
extension; v(t) is the function of change in the angle of 
pendulum deviation; w is the numerical value of the ratio 
of counter-weight load mass to the mass of pendulum load; 
g=9,81.

By using the expressions for kinetic and potential ener-
gy, we build a system of second order Lagrange differential 
equations. Approximate solution of this system determines 
the sequence of points along the trajectory of pendulum load 
motion. By connecting these points, one may formulate an 
idea about the trajectory as a whole. However, at a random 
selection of the values of parameters, the resulting trajectory 
will take the form of a “non-technological” chaotic curve. Pa-
per [12] examined the methods for ensuring the non-chaotic 
(including periodical) solutions through the choice of input 
parameters. The role of these parameters (except for w) was 
assigned to the values of functions u(t) and v(t) in the initial 
points of computations. However, these methods are based 
on the analytical transformations, are difficult to represent 
and are not universal.

Therefore, it is necessary to develop a graphic comput-
erized method for choosing the parameters of non-chaotic 
trajectories of pendulum load oscillations in the Atwood 
machine. 

By using formulas for the kinetic and potential ener- 
gy (5), we obtain a Lagrangian in the form:

( )( )

2

2
2

1 d
L (1 w) u(t)

2 dt

1 d
u (t) v(t) gu(t) w cos v(t) .

2 dt

 = + +  

 + − −  
 (6)

Based on the Lagrangian, we obtain a system of second 
order Lagrange differential equations:

( )

2 2

2 2

2

d d
u(t) u(t) w

dt dt

d
u(t) v(t) gw g cos v(t) 0;

dt

   
+ −      

 − + − =  

A system of second order Lagrange equations with re-
gard to the value of w will be solved by the Runge-Kutta 
numerical method with initial conditions:

– initial length of the string in pendulum part u(0)=u0;
– initial speed in the change of string length D(u)(0)= 

=Du0;
– initial angle of pendulum deviation from the vertical 

v(0)=v0;
– initial speed in the change of deviation angle D(v)(0)= 

Dv0.
In order to determine the values of these parameters, 

which would provide for the non-chaotic trajectory of pen-
dulum load motion, we shall apply the method of projection 
focusing. For this particular problem, its essence is as follows: 
by using a numerical method with the selected initial con-
ditions, we solve a system of differential equations (7) and 
build the image of integral curve in phase space {u, Du, t}  
depending on the value of “controlling” parameter w. In a 
general case, there will form a “confused” integral curve in 
the phase space (Fig. 12, a). Let us project it onto phase plane 
{u, Du} where we also observe a “confused” phase trajectory. 
In case the “controlling” parameter w changes, the character 
of the phase trajectory must also change. At a certain critical 
value of w=w0, the character of phase trajectory will change 
at the qualitative level – it becomes the “natural” curve. On 
the phase plane, a near-optical effect will be observed of 
the image sharpening in the confusion of phase trajectories  
(Fig. 12, b). This process of finding parameters’ critical val-
ues is named the projection focusing.

Taking into account the critical value of parameter w 
when solving a system of differential equations (7) will cause 
the emergence of point coordinates on plane {x, y}, which 
must be arranged along the non-chaotic trajectory. 

For this purpose, coordinates of the points along the load 
trajectory should be calculated by formulas:

( )x(t) u(t)sin v(t) ;=

( )y(t) u(t)cos v(t) .= −

In this formula, u(t) and v(t) denote the approximate 
solution of the system of equations (7).

Here is an example of solving a system of equations (7) 
under conditions: u0=1; v0=p/2; Du0=0; Dv0=0. If parame-
ter w changes, for example, within 2£w£2,5 at step h=0.2, we 
obtain a set of integral curves. One of such curves is shown 
in Fig. 12, a. Critical value of the parameter will be obtained 
as a result of projection focusing at value w0=2.394, which 
matches Fig. 12, b.

Fig. 13 shows an example of the geometric modeling of 
trajectory (Fig. 13, a) and action of the Atwood machine 
with a pendulum (Fig. 13, b). Fig. 13, b shows a frame from 
the animation scheme of action of the Atwood machine with 
a pendulum. The pictured trajectory is advisable to compare 
to the results of paper [12], which were obtained by the 
means of analytical dependences.

Fig. 14 shows examples of geometric modeling the tra-
jectory of the Atwood machine’s pendulum load oscillations 
depending on some other values w of the ratio of count-
er-weight load mass to the mass of pendulum load.

Therefore, the selection of parameters for obtaining 
the non-chaotic trajectories of pendulum load oscilla-
tions in the Atwood machine can be carried out based on 
the graphic computerized method of projection focusing.

 

( )
2

2

d d d
u(t) 2 v(t) u(t) u(t) v(t) g sin v(t) 0. (7)

dt dt dt

      + + =            
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5. Results of a computer graphic 
technology for determining the 

non-chaotic load oscillations 
in the pendulum mechanical 

conservative systems

As a result of the research con-
ducted, we developed a technique 
for determining the non-chaotic 
trajectories of load oscillations 
for some varieties of pendulums 
using the graphic technology of 
projection focusing. For this pur-
pose, we proposed to consider the 
phase trajectories of second order 
Lagrange differential equations of 
oscillations as the projections from 
the phase space onto the phase 
plane of integral curves of these 
equations. The influence of the 
value of controlling parameter on 
the image of phase trajectories 
was examined and we obtained 
the image of focus-line – a phase 
trajectory that is focused into the 
“regular” curve. The approximate 
solution to second order Lagrange 
differential equation with the se-
lected value of controlling param-
eter will determine the non-chaot-
ic trajectory of load displacement. 
Examples of applying the pro-
jection focusing are presented to 
solve the problems on determin-
ing the non-chaotic oscillations of 
pendulums with movable suspen-
sion points, as well as the calcula-
tion of non-chaotic trajectories for 
the pendulum motion of load in the 
Atwood machine.

a
 

a
 

a                                                                             b 
Fig. 12. Phase trajectories as projections of integral curves: a – for an arbitrary value of 

the “controlling” parameter; b – for the critical value of the “controlling” parameter 

  

 

Fig. 13. Example of modeling the action of the Atwood machine under conditions u0=1; 
v0=p/2; Du0=0; Dv0=0; w0=2.394: a – pendulum load trajectory;  

b – a frame from the animation scheme of the Atwood machine action with a pendulum

 

 

 

 

 

 

 

 

 

 

 

                                                                                                

Fig. 14. Examples of the trajectory of the Atwood machine’s pendulum oscillation depending on certain values w:  
a – at w=5.5; b – at w=6.0; c – at w=4.7; d – at w=3,3; e – at w=2.4; f – at w=2.0
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The advantages of the devised method for determining 
the non-chaotic oscillation trajectories of loads in the variet-
ies of pendulums by using graphic technology of projection 
focusing include the formalization of actions when searching 
for the periodic trajectories. 

A shortcoming, however, is the fact that it is possible to 
apply the procedure developed mainly to conservative oscil-
latory systems. 

The study might be used for pendulum mechanical oscil-
lations, where the energy dissipation process proceeds slowly 
compared with the characteristic scales of time in the system 
that weakly affects the character of motion.

We plan to continue research into pendulum non-conser-
vative oscillatory systems.

6. Conclusions

The developed computerized projection technique for 
simulating the oscillations of pendulum mechanical systems 
makes it possible to select the required values of parameters 

and initial conditions for initiating the oscillations that 
provide for the non-chaotic technological character of oscil-
lation trajectory of elements in these systems. 

We propose the notion of a focus-line of the parametric 
family of curves and the technique of projection focusing, 
which is based on this notion. This allows us to determine 
the critical values of controlling parameter in the family of 
curves, at which the image of elements of the family will take 
a minimum area (in pixel dimension).

We constructed integral curves in the phase space based 
on the numerical solution of second order Lagrange differen-
tial equations. These equations describe varieties of oscilla-
tions in the pendulum systems. The image was received of pro-
jection of the indicated integral curves onto the phase plane. 

We present a procedure to determine the critical value of 
pendulum oscillations parameter by using the graphic notion 
of projection focusing of phase trajectories for the solutions 
of second order Lagrange differential equations. 

The examples of determining the parameters of certain 
pendulums are given, which (the parameters) would provide 
for the non-chaotic trajectory of load oscillations.
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