ции углей, имеет следующий вид: реакции, происходящие на угольной стенке

$$C+O_2=CO_2;$$
 $2C+O_2=2CO;$ $C+CO_2=2CO;$

$$C+H_2O=CO+H_2$$
; $C+2H_2O=CO_2+2H_2$; $C+2H_2=CH_4$.

и реакции, происходящие в газовой фазе:

$$2CO+O_2=2CO_2$$
; $2H_2+O_2=2H_2O$; $CH_4+2O_2=CO_2+2H_2O$;

$$CO+H_2O=CO_2+H_2$$
; $CO+3H_2=CH_4+H_2O$.

В модели учитывается семь различных компонентов газовой смеси O_2 , CO_2 , CO_2 , CO_3 , CO_4 ,

Обозначим переменную вдоль оси канала через x (м), площадь сечения S (м 2), длину контура, занимаемого углем l_y (м), и длину контура, занимаемого горными породами l_n (м). Уравнения сохранения вещества в предположении стационарности процесса имеют вид

$$\frac{d(w(x) \cdot c_i(x))}{dx} = \sum_{i} R_{ij} + \sum_{m} R'_{im} l_y / S + k_i l_y / S, \quad (i = 1,...,7).$$
 (1)

Здесь w(x)-скорость потока вдоль оси канала (м/c); $c_i(x)$ -концентрация i-го компонента газа в сечении x (кмоль/м³); R_{ij} - скорость образования (поглощения) i-го вещества в j-й реакции в газовой фазе (кмоль/(м³ c)); R_{im}^{\prime} - скорость образования (поглощения) i-го вещества в m-й реакции на поверхности угольной стенки (кмоль/(м² c)); k_i -поток i-го газа пиролиза через угольную стенку или приток водяного пара в случае, когда индекс i соответствует H_2O (кмоль/(м² c)).

Уравнение состояния идеального газа имеет вид

$$p(x) = \left(\sum_{i=1}^{7} c_i(x)\right) \cdot RT_g(x), \tag{2}$$

где p(x)-давление в сечении x (к Πa); R-универсальная газовая постоянная (8,314 кДж/(кмоль K)); $T_g(x)$ -температура газа в ядре потока сечения x (K).