ОБЕСПЕЧЕНИЕ ПОЖАРНОЙ И ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ

УДК 162.3

А.Я. Калиновский¹, канд.техн.наук, доцент А.Н. Ларин¹, докт.техн.наук, профессор Д. Аманкешұлы², магистр экологии, старший преподаватель Р.С. Баймаганбетов², магистр экологии, старший преподаватель М.С. Ханафеев², курсант 4-го курса ФОО ¹Национальний университет гражданской защиты Украины г. Харьков ²Кокшетауский технический институт МЧС Республики Казахстан

ВЛИЯНИЕ РАЗМЕРОВ И ФОРМЫ ОЧАГА ЗАГОРАНИЯ НА ФОРМУ КОНТУРА ЛАНДШАФТНОГО ПОЖАРА

Исследована зависимость формы контура пожара и его размеров от формы и размеров исходного очага пожара. Показано, что такая зависимость существует только для времени развития пожара t≤30 мин., а при t>30 мин. контур пожара «забывает» о параметрах исходного очага.

Постановка проблемы. Одним из основных вопросов противопожарной охраны лесов является прогнозирование динамики распространения контура пожара по определенной территории, то есть нахождения зависимости формы и размеров контура от времени t. Знание контура лесного (ландшафтного) пожара позволяет сделать правильный выбор методов тушения пожара [1,2]. Известно [1-3], что контур пожара может иметь самую разнообразную форму, поскольку скорость распространения пожара зависит от большого числа различных природных факторов.

Обычно наличие лесного пожара обнаруживают через определенное время t_0 после его начала. К этому времени контур пожара приобретает некоторую форму и размеры, которую будем обозначать величиной $H_0(K_0, S_0, L_0, t_0)$, где K_0 описывает форму контура, S_0 и L_0 – его площадь и периметр соответственно. Именно эту величину H_0 и будем рассматривать для описания исходного очага пожара. Исходя из данного значения H_0 и используя определенные модельные предположения о динамике развития пожара, необходимо предсказать значение H(K, S, L, t) в любой другой момент времени t. При этом возникает вопрос о зависимости H от H_0 или, точнее, как влияет форма и размер очага загорания на контур H развитого пожара.

Анализ последних исследований и публикаций. В [2] расчеты К проведены методом размещения плоских геометрических объектов с использованием предложенного авторами «единичного контура горения» (по сути годографа скорости горения [5]) в виде сшивки двух полуэллипсов. В [4] аналогичные расчеты выполнены методом имиджевой экстраполяции. Авторы [2,4] получают, что форма контура пожара К в каждый последующий период времени t по сути сильно зависит от формы K₀, а модель [4] собственно и построена на такой зависимости. Более того, сделан вывод [4] о возможности по известному контуру К восстановить формы контуров в предыдущие моменты времени и даже предсказать место возникновения пожара. Нам представляется, что указанные выводы [2,4] обусловлены недостаточно детальным исследованием этого вопроса, а в [4] также исключительно методом расчета К.

Постановка задачи и ее решение. Ниже нами исследована зависимость формы контура пожара и его размеров от формы и размеров исходного очага пожара. Показано, что через определенное время Т форма пожара в основных своих измерениях по сути «забывает» о форме очага загорания. Иначе говоря, величина H(K, S, L, t) при $t \ge T$ является приблизительно инвариантной величиной относительно $H_0(K_0, S_0, L_0, t_0)$.

Для исследования поведения величин H(K, S, L, t) нами использована экспериментально-аналитическая модель [5], согласно которой годограф скорости распространения низового пожара имеет вид:

$$V = V_0 \frac{2\alpha \cos x + (1 + \alpha^2)\sqrt{\cos^2 x + (1 - \alpha^2)^2 \sin^2 x}}{\cos^2 x + (1 + \alpha^2)^2 \sin^2 x},$$
 (1)

где V₀= υ_0 + к υ_B , $\alpha = v_B / \sqrt{v_B^2 + c^2}$, x= φ + ψ , υ_B и ψ сила ветра и его направление относительно полярной оси, которая совпадает с осью ОХ, ф – азимутальный угол, υ_0 – скорость распространения пожара при $\upsilon_B=0$. Параметры модели υ_0 , к и с зависят от состава и состояния горючего материала и приведены в [6]. Если $\psi=0$, то при $\phi=0$ получаем фронтальную скорость распространения пожара $V=V_{\Phi P}$, а при $\phi=\pi$ – тыловую $V=V_T$, где $V_{\Phi P}$, V_T , а также фланговая скорость V_{ФЛ} совпадают с выражениями, приведенными в [6]. Отметим, что формула (1) распространение пожара равнинной местности, описывает на а ee подтверждена справедливость многочисленными экспериментальными исследованиями (см. [2]).

Если начальный очаг загорания имеет форму, которую можно описать выражением $r_0=r_0(\phi)$ при $t_0=0$, то предполагая, что величины υ_B , ψ , υ_0 , к и с не зависят от t, получаем выражение:

$$R(\phi, t) = r_0 + Vt , \qquad (2)$$

для описания контура пожара в момент времени t.

В качестве исходных очагов загорания нами рассмотрены следующие плоские фигуры: окружность, квадрат и овалы Кассини. Уравнения окружности и квадрата с центром в начале координат имеют соответственно вид:

$$r_0(\varphi) = \sqrt{S_0 / \pi} \quad , \tag{3}$$

$$r_0(\varphi) = \frac{\sqrt{S_0/2}}{|\cos \varphi| + |\sin \varphi|} , \qquad (4)$$

а уравнение овалов Кассини в полярной системе координат –

$$r_{0}(\varphi) = \sqrt{a^{2}\cos 2\omega + \sqrt{a^{4}\cos^{2} 2\omega - a^{4} + c^{4}}} , \qquad (5)$$

где величина S₀ равна площади очага загорания, $\omega = \phi + \chi$, а угол χ определяет ориентацию фигур (4) и (5) относительно полярной оси координат. Если $a \ge \sqrt{2}c$, то уравнение (5) описывает овал, если $c\langle a \langle \sqrt{2}c \rangle$ овал с талией, если a=c – лемнискату Бернулли (в этом случае S₀=2a²), если $a\langle c \rangle$ два овала. В общем случае уравнения (5) его площадь S₀ вычисляется с помощью эллиптических функций.

Расчеты контуров пожара проведены нами с использованием формул (1) – (5) при следующих значениях параметров $v_0=0,067$ м/с, $\kappa=0,0075$, c=240 м/с, трех значениях $v_B=0$, 3 и 6 м/с и для t от 0 до 180 мин при S₀=162 м² и S₀=684 м². Если очаг пожара описывался формулами (4) и (5), то в расчетах полагали $\chi=0$, $\pi/4$ и $\pi/2$, что соответствует трем различным ориентациям фигур (4) и (5) относительно направления ветра, для которого для наглядности результатов было принято $\psi=0$. Таким образом, поворот фигур (4) и (5) фактически соответствует изменению направления ветра.

На рис. 1-5 приведены в качестве примеров наиболее интересные и характерные результаты проведенных нами исследований.

Из рис. 1 видно, что все кривые для контуров имеют четкую овальную форму, при t≥60 мин – почти эллиптическую, а в правой полуплоскости (то есть по направлению ветра) контур становится почти эллиптической формы уже при t≥10 мин. Из сравнения соответствующих кривых на рис. 1б и 1в следует, что зависимость контура пожара от величины S₀ является пренебрежимо малой (\leq 5%) уже при t=30 мин, а с увеличением t величина S₀ практически не влияет на контур пожара. Для очагов пожара в форме вытянутых овалов (5) расчеты приводят к кривым контура пожара, которые с большой точностью практически совпадают с приведенными на рис.1 уже при t≥10 мин.

Обеспечение пожарной и промышленной безопасности

Рисунок 1 - Начальный очаг (3), а) S₀=162 м², б) S₀=162 м², в) S₀=684 м². кривые 1-7 соответствуют t=1, 10, 20, 30, 60, 120, 180 мин. Расстояние по осям в метрах, v_B=3 м/с. Внутренние контуры на рис. 1б и 1в соответствуют контурам 1-4 рис.1а.

На рис. 2 представлены результаты расчетов с очагом пожара в форме квадрата (4). Как и в предыдущем случае наиболее опасное направление распространения пожара определяет направление ветра. Поэтому естественно рассматривать и сравнивать получаемые кривые для контуров пожара в правой полуплоскости. Из рис. 2 видно, что сделанные выше выводы остаются в силе и для очага в форме (4). Из сравнения кривых на рис. 1 и 2 и расчетов для S_0 =684 м² следует, что форма исходного очага пожара также слабо влияет на контур пожара, а имеющиеся отличия для контуров в левой полуплоскости незначительны и не являются принципиальными.

Обеспечение пожарной и промышленной безопасности

Рисунок 2 - Начальный очаг в форме (4), S₀=162 м², а) χ=0, б) χ=π/2, в) χ=π/2. Остальные обозначения, как и на рис. 1.

На рис. 3 приведены более интересные результаты расчетов для случая лемнискаты Бернулли (5). Из рис. 3 видно, что в этом, может быть несколько экзотическом случае, «залечивание» контура пожара происходит сравнительно медленнее, чем в предыдущих случаях, и контур пожара сохраняет память о форме исходного очага пожара (в правой полуплоскости) до t≤30 мин. Однако, при больших временах эта память стирается, и кривые 5, 6 и 7 мало отличаются от соответствующих кривых на рис. 1 и 2.

Обеспечение пожарной и промышленной безопасности

Рисунок 3 - Начальный очаг в форме (5) при а=с=9 м и S₀=162 м², а) $\chi = \pi/4$, б) $\chi = \pi/2$, в) $\chi = \pi/2$. Остальные обозначения, как и на рис. 1.

Результаты расчетов контура пожара для очага в форме овала с талией приведены на рис. 4. Эту форму очага можно рассматривать как промежуточную между овалом (или кругом) и лемнискатой Бернулли. В этом случае «залечивание» контура пожара происходит очень быстро при $\chi=0$, а при $\chi=\pi/2$ память об очаге пожара сохраняется вплоть до t=30 мин.

Вестник Кокшетауского технического института МЧС Республики Казахстан. №2 (14), 2014

Обеспечение пожарной и промышленной безопасности

Рисунок 4 - Начальный очаг в форме (5) при а=11,5 м, с=12 м, и S₀=434 м², а) $\chi = 0$, б) $\chi = \pi/2$, в) $\chi = \pi/2$. Остальные обозначения, как и на рис. 1.

Отметим, что расчеты, аналогичные приведенным на рис. 2-4, но при других значениях S_0 , а также расчеты для овалов принципиально не меняют сделанные нами выводы.

Рисунок 5 - Начальный очаг в форме (5) при а=c=9 м и S₀=162 м², а)v_B=6 м/с, б)v_B=0 м/с, в)v_B=0 м/с. Остальные обозначения, как и на рис. 1.

Представленные выше результаты расчетов получены при $\upsilon_B=3$ м/с. Кривые на рис. 5 отражают влияние K_0 на К при разных значениях υ_B . Из анализа кривых можно сделать следующий вывод: с увеличением υ_B время Вестник Кокшетауского технического института МЧС Республики Казахстан. №2 (14), 2014 «забывания» Т уменьшается, а с уменьшением υ_B – увеличивается. При $\upsilon_B=0$ м/с память контура пожара об исходном очаге сохраняется вплоть до t=180 мин.

Выводы. Таким образом, проведенный нами анализ показывает, что форма и размеры контура пожара через время t \approx 30 мин после его обнаружения практически не зависят от формы и размеров очага загорания. Конечно, результаты расчета контура пожара при других, значительно отличающихся S₀, будут другими, однако, это будет соответствовать уже более позднему времени t₀ обнаружения пожара после начала возгорания. Поэтому для упрощения расчетов и сокращения времени их проведения можно ограничиться простой формой очага пожара в виде круга, а основным исходным параметром для расчетов считать его площадь S₀. Отсюда, на наш взгляд, следует простой вывод, имеющий большое практическое значение. Для прогнозирования развития пожара необходимо и достаточно определять, скажем методами аэронаблюдения, именно и только площадь S₀.

В заключение отметим, что вопрос об определении времени «забывания» Т, а также обсуждение наличия вогнутостей на контуре пожара и их «залечивание» (см. рис. 3, 4) в связи с гипотезой Маркштейна предполагается провести в следующих публикациях.

Список литературы

1. Г.А. Доррер. Математические модели динамики лесных пожаров. – М.: Лесная пром-сть, 1979. – 160с.

2. Ю.А. Абрамов и др. Обнаружение очагов лесных пожаров и прогноз динамики их распространения. – Харьков: АГЗ Украины, 2004. – 145с.

3. Э.Н. Валендик. Борьба с крупными лесными пожарами. – Новосибирск: Наука, 1990 – 193с.

4. С.В. Васильев, Л.Н. Куценко. Компьютерные системы прогнозирования контуров выгорания при лесных пожарах. // Пожарная безопасность. Материалы VI научно-практической конференции. – Харьков, АПБУ, 2003. – с. 69-71.

5. А.Е. Басманов, А.П. Созник, А.А. Тарасенко. Эсперементальноаналитическая модель скорости распространения низового лесного пожара. // Проблемы пожарной безопасности. Сб. научн. тр. Вып. 11. Харьков: Фолио, 2002. – с. 17-25.

6. Г.П Телицын. Зависимость скорости распространения низовых пожаров от условий погоды. // Сб. тр. ДальНИИЛХ. – 1965. Вып. 7. – с. 390-405.