Серьезную экологическую и пожарную опасность представляют выбросы паров нефтепродуктов из дыхательных систем резервуаров нефтебаз, которые классифицируют как «малые» и «большие» дыхания. Чтобы оценить массу паров бензина при выбросах от «больших дыханий», необходимо знать вытесняемый объем и концентрацию паров бензина в газовом пространстве в момент «большого дыхания». При каждом «большом дыхании» в атмосферу может вытесняться объем бензино-воздушной смеси равный освободившемуся объему резервуара. Остаток бензина в опорожненном резервуаре составляет не менее 20% от полного объема резервуара.

Для прогнозирования концентрации паров бензина в газовой полости резервуара достаточно оценить минимальные и максимальные ее значения. По закону Дальтона общее давление в замкнутом газовом объеме резервуара будет суммироваться из парциального давления воздуха (атмосферное давление 101,3 кПа) и парциального давления паров бензина (давление насыщения). Зная отношение парциального давления паров бензина к общему давлению, можно определить концентрацию паров бензина в бензовоздушной смеси (БВС) в газовой полости резервуара [1]. Данные о давлении насыщения приняты по Н.Б. Варгафтику [2], а также могут быть получены по уравнению Антуана [3].

Концентрация паров бензина в замкнутой (герметичной) газовой полости резервуара повышается за счет упругости паров и при длительном хранении достигает своего наибольшего значения, при этом в газовой полости устанавливается давление равное ($p_{\rm H}+p_{\rm o}$). В соответствии с законом Дальтона отношение объемов двух газов (воздуха и паров бензина) будет определяться их парциальными давлениями. Парциальное давление паров бензина при этом равно давлению насыщения, а парциальное давление воздуха — атмосферному давлению воздуха. С учетом изложенного, концентрацию паров бензина в газовом объеме можно определить по формуле (табл 1):

$$c_{\scriptscriptstyle \rm II}$$
 = 100 $p_{\scriptscriptstyle \rm H}$ / $(p_{\scriptscriptstyle \rm H}$ + $p_{\scriptscriptstyle \rm O}$),% oб.,

где: $p_{\rm H}$ — давление состояния насыщения при температуре хранения, кПа; $p_{\rm o}$ — атмосферное давление воздуха, кПа.

Максимальные значения концентрации паров бензина в газовой полости резервуара будут значительно выше табличных значений по причине того, что при постоянном испарении бензина в резервуаре будут многочисленные «малые дыхания» (из дыхательного клапана), при каждом из них будет вытесняться порция более бедной смеси, находящаяся в верхней части газовой полости резервуара. Количество «малых дыханий» летом в дневное время в период между «большими дыханиями» будет измеряться сотнями, а объем каждого выброса будет составлять до 2% объема газовой полости.

Давление (кПа) насыщения бензина и концентрация (% об.) паров бензина в зависимости от температуры хранения бензина, устанавливающиеся в

газовой полости абсолютно герметичного резервуара

Температура хранения	+30	+5 (осень-весна, или	-25(при
бензина, ⁰ С	(лето)	при подземном	наземном
		хранении зимой)	хранении
			зимой)
Давление насыщения	16,8	5,3	2
бензина, кПа			
Концентрация паров	15	5	2
бензина в газовой полости			
резервуара, % об.			

По данным, приведенным в СНиП 2.04.05-91, объемная концентрация в БВС может в 2-3 раза превышать значения (табл. 1), которые могут установиться в абсолютно герметичном резервуаре. На крупных нефтебазах с большим грузооборотом каждый резервуар может заполняться и опорожняться до нескольких десятков раз в течение года, и потери от испарения могут стать весьма значительными.

Плотность паров бензина ρ_{π} может быть определена из закона Авогадро с учетом поправки на температуру хранения:

$$\rho_{T} = \frac{\dot{I} \mu}{V\mu} \cdot \frac{T_0}{T}, \, \kappa \Gamma / M^3$$

где: $I \mu = 97$ — молярная среднефракционная масса паров бензина, кг/кмоль; $V\mu = 22,4$ — молярный объем паров бензина, м³/кмоль; $T_o =$ стандартная температура (273), K; T = (273+1) — температура хранения, бензина, K; t — температура хранения, 0 C.

Масса паров бензина в газовом пространстве резервуара M_Γ будет пропорциональна объемной концентрации C_n , объему газового пространства V_n и плотности ρ_n , т. е.:

$$M_{\Gamma} = (\rho_{\Pi} \cdot V_{\Pi} \cdot C_{\Pi}) / 100$$
, кг
бъем резервуара, м³.

где: $V_{\Gamma} - 0.8V$; V - объем резервуара, M^3 .

Результаты расчетов потерь бензина от одного «большого дыхания» резервуара приведены в табл. 2.

Таблица 2. Потери бензина от одного «большого дыхания» резервуаров

Емкость	Лето	Весна-осень	Зима	Лето (при
резервуара,				использовании
\mathbf{M}^3				холодильной
				установки)

15	9-16	2,5-7,4	1,1-6,7	0,4-0,5
20	12-21	3,3-10	1,5-8,9	0,5-0,7
30	18-32	4,9-15	2,2-13	0,7-1,1
40	24-42	6,6-20	3,0-18	1,0-1,5
500	302-529	82-247	37-222	12-18

ЛИТЕРАТУРА

- 1. Глинка Н. Л. Общая химия: Учебное пособие Под ред. А.И. Ермакова.- М.: Интеграл-Пресс, 2002.-728 с.
- 2. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей.-М.: Наука, 1972.-720 с.
- 3. Сборник нормативных документов, регламентирующих нормы и правила пожарной безопасности. М.: Альфа-ПРЕСС, 2003. 545 с.