ОЦЕНКА ПРОЧНОСТИ БОЛТОВОГО УЗЛА КРЕПЛЕНИЯ БАЛОЧНОЙ КОНСТРУКЦИИ ПРИ ПОЖАРЕ

А.В.Васильченко, к.т.н., доцент, НУГЗУ

Считается, что разрушение изгибаемой статически определимой строительной конструкции (с шарнирным закреплением) происходит из-за образования пластического шарнира в пролетной части, а разрушение статически неопределимой конструкции — из-за образования пластических шарниров в пролетной части и на опорах [1].

На практике не всегда удается точно определить, действительно ли изгибаемая конструкция статически определима из-за особенностей ее закрепления на опорах. Часто она только принимается как статически определимая для расчетов в нормальных условиях по предельным состояниям. Поэтому следует уточнить очередности и особенности образования пластических шарниров при достижении критической температуры балочной конструкции во время пожара.

Для разрезного изгибаемого элемента с верхним опиранием и болтовым креплением принимается шарнирная схема закрепления [1]. То есть имеется в виду, что на опорах, несмотря на надежность крепления возможны микроперемещения изгибаемого элемента. Его допустимый прогиб в нормальных условиях обеспечивается собственной жесткостью элемента. Это означает, что при достижении в пролетной части 3 стадии напряженно-деформированного состояния (а значит и образования пластического шарнира) нельзя ожидать автоматического образования пластических шарниров на опорах. Они появятся по исчерпании несущей способности болтового соединения. Можно ожидать, что при нагреве изгибаемого элемента во время пожара и достижении критической температуры увеличится прогиб элемента за счет пластической деформации, что вызовет увеличение напряжения в анкерных болтах на опорах и образование в этих местах пластических шарниров.

Для проверки предположения в качестве примера выбрана равномерно нагруженная балка с верхним опиранием на колонну и болтовым креплением двумя анкерными болтами M64 из стали ВСт3кп2 по ГОСТ 535-88. Принято: расчетное сопротивление на разрыв R_{ba} =185 МПа и на срез R_{bc} =145 МПа, изгибающий момент M_m =166 кН·м, плечо опирания балки на оголовок колонны l_N =150 мм, допустимый относительный прогиб балки Θ = 0,005.

Усилие, вызывающее в болте напряжение, можно разложить на составляющие: P_N — вдоль оси болта (растяжение) и P_C — перпендикулярно оси (срез). Причем, эти усилия будут изменяться в зависимости от прогиба балки.

В соответствии с указаниями СНиП 2.03.01-84, а также из условия равновесия можно найти напряжения растяжения (σ_N) и среза (τ_C) в болте:

$$\sigma_{N} = \frac{P_{N}}{A} = \frac{4M_{m}}{l_{N}(1 + 4\Theta^{2})n\pi d^{2}};$$
(1)

$$\tau_C = \frac{P_C}{A} = \frac{8M_m \Theta}{l_N n \pi d^2}, \qquad (2)$$

где A — суммарная площадь сечения болтов, см 2 ; n — количество болтов; d — диаметр болта, мм; Θ — относительный прогиб балки. Результаты вычислений показаны в табл. 1.

Далее, можно определить коэффициенты снижения прочности болтов при повышении температуры (γ_T) для различных значений относительного прогиба балки [2].

Для напряжения растяжения:

$$\gamma_T = \frac{M_m}{l_N (1 + 4\Theta^2) A R_{ba} \gamma_c}.$$
 (3)

Для напряжения среза:

$$\gamma_T = \frac{2M_m \Theta}{l_N A R_{bc} \gamma_c} \,, \tag{4}$$

где γ_c — коэффициент условий работы, γ_c =1. Результаты вычислений показаны в табл. 1.

Табл. 1. Напряжения и критические температуры в анкерных болтах при различных значениях относительного прогиба балки

Относитель-	При работе на растяжение			При работе на срез		
ный прогиб, Θ	$σ_N$, κH/cm ²	γ_T	t, °C	$\tau_{C,}$ κH/cm ²	γ_T	t, °C
0,005	17,20	0,91	170	0,17	0,012	700
0,01	17,19	0,89	180	0,34	0,024	700
0,05	17,03	0,77	300	1,72	0,12	690
0,1	16,54	0,66	450	3,44	0,23	640

Вычислив значения коэффициентов снижения прочности болтов, можно определить температуры (t), при которых достигаются предельные сопротивления на разрыв и срез в опорном узле при различных значениях относительного прогиба балки [2].

Приведенный пример показывает, что при верхнем опирании балок на колонну в расчетном болтовом креплении при эксплуатационных температурах пластический шарнир не образуется при относительном прогибе балки значительно превышающем допустимый. В случае же прогрева узла соединения до температуры $170~^{\circ}$ С даже при допустимом относительном прогибе образуется пластический шарнир, обусловливающий потерю несущей способности балки.

Следовательно, при пожаре достижение критической температуры в пролетной части изгибаемого элемента приведет к разрушению конструкции, только если узел крепления даже сравнительно мало нагревается, то есть не обеспечена его огнезащита.

ЛИТЕРАТУРА

- 1. Байков, В.Н. Строительные конструкции : Учеб. для вузов . 2-е изд., перераб. М. : Стройиздат, $1980 \cdot 364 \cdot c$.
- 2. Будівельні конструкції та їх поведінка в умовах надзвичайних ситуацій: Навчальний посібник / О.В. Васильченко, Ю.В. Квітковський, О.В. Миргород, О.А. Стельмах. Харків: ХНАДУ, 2015. 488 с.