Seminar at LNGS, July 23, 2015

The NaI:Tl and CsI:Tl crystals for effective detection of X-rays and low energy charged particles

Alexander M. Kudin

Institute for Scintillation Materials NAS of Ukraine National University of Civil Protection of Ukraine

July 22, Assergi, Italy

DAMA single detector unit

Design like DAMA II stage.... Why not think about how to improve it?

In DAMA/SABRE experiments expected energy range is 2-4 keV

See Talk by E. Shields at TAUP2013

Internal Source: 0.84 keV

McCann M.F. and Smith K.M. On the Detection of 1 keV Events in NaI:Tl NIM, 65 (1968) 173.

Characteristic X-rays

Problems of low energy particle detection

Light yield depends on dE/dx

Energy resolution and non-proportionality of response

4

Dark matter search with NaI and CsI

Quenching factor for ²³Na and ¹²⁷J

Protons	100 %	
Alphas	60 %	
²⁰ Ne	42 %	
it can be estimated		
²³ Na	$\sim 35\%$	
^{127}I	$\sim 8 \%$	

Quenching factor depends on Tl concentration

Optimum Tl concentration (C_{Tl}^*) in NaI:Tl

 $C_{\text{Tl}}^* = 7.3 \cdot 10^{-2} \%$ for soft X-rays of 5.9 keV;

 $C_{\text{Tl}}^* = 1.3 \cdot 10^{-1} \%$ for α -particles.

Requirements to scintillation material for charged particles and light ions detection:

- maximum scintillation efficiency to photons detection;
- high transparency to rich maximum light collection coefficient;
- homogeneity of thallium distribution and other dopands to rich best value of energy resolution;

Additional:

- increased Tl concentration to rich best scintillation efficiency for charged particles detection;
- stability of surface state;
- absence of dead layer.

$C_{\text{Tl}}^* > 0.15$ % for ion detection in NaI:T1

NaI:Tl crystal for particle detection: homogeneity

Furnace for crystal growth with conical crucible "Crystal-400"

Distribution of Tl and other coactivators in scintillation material "CsI:Tl,Na,CO₃" along height. The same is thru for NaI:Tl

Impurity distribution in crystal grown by Bridgman-Stockbarger technique

 $C_{\text{Tl}} = C_0 k_0 \left(1 - \frac{V}{V_o}\right)^{k_0 - 1}$ k_o – equilibrium segregation coefficient $C_{\mathrm{TI}} [\mathrm{mm}]$ NaI:Tl 1 - crystal growth invacuum; 28 2 - crystal growth in 1 0 24 oxygen; 3 – calculated curve for 2 20 $k_0 = 0.25$ 3 $C_0 = 0.36 \%$ 2 16 . 12 20 0 40 60 80 100 h [mm]

In heavy doped crystal activator is distributed non-uniformly

Non-homogeneous distribution of activator in CsI:Tl (microscopic)

Table: PIXE analysis results

Brand	CsI	Nominal TI	Measured Tl	Type of
	n.	conc.(ppm)	conc. (ppm)	measure
GB	1	4000	6400±200	Face A, av
GB	1	4000	9300±300	Face A, point
GB	1	4000	5400±200	Face A, point
GB	1	4000	6100±200	Face B, av
GB	1	4000	4610 ± 180	Side, av
GB	2	3000	2950±110	Face A, av
GB	2	3000	4900±200	Face B, point
GB	2	3000	3030±120	Face B, av
St. Gobain	- 3	500	440 ± 50	Face A, av
St. Gobain	4	200	280±30	Face A, av
Marketech	5	700	520±30	Face A, av
Scionix	6	2500	5220±160	Face A, av

FAZIA collaboration results

In $C_{Tl} > 0.2\%$ the activator is not homogeneous distributed both macroscopically and microscopically

Nature of concentration quenching

Schematic image of microscopic distribution of Tl⁺ center in CsI crystal at high Tl concentration. Photo represents the character of decoration of the cleavage plane in two different places. (Electron microscope; ×16 000; decoration by gold). Black squares correspond to places of increased Tl content (so-called spinodal decay of solid solution)

Uniformity of spectrometric parameters

Photodiode scintillator of 200 cm³ volume. 16 sample from selected region of ingot.

CsI:Tl ingot of 240 mm dia. and 360 mm heigh

Pulse height spectra for each element (left) and summarized spectrum of whole block (right).

V = 216 cm³.

Nature of millisecond afterglow

Nature of millisecond afterglow

Oxygen suppress AG and LY

Nature of millisecond afterglow and its suppressing

 $TI^+ - O_2^- - TI^+$

Model of electron trap which forms a quenching center for recombination luminescence

Crystal growth of uniform and heavy-activated ingot

Scintillation materials: CsI:Tl,CO₃ or NaI:Tl,CO₃

Conclusion

- for Dark Matter search the heavy doped NaI:TI crystals are needed;
- characterization of crystal quality should be done using alphaparticles and fissing fragments;
- it has been shown that NaI:TI crystals with $C_{TI} \sim 0.3$ % are available (so called NaI:TI,IO₃ crystals). CsI:TI,IO₃ crystals with $C_{TI} \sim 0.5$ % can be grown by Stockbarger technique;
- uniformity of NaI:TI,IO₃ and CsI:TI,IO₃ ingots is bad due to used crystallization technique;
- to obtain large uniform NaI:TI crystal the modified Kyropoulos technique should be used;
- to obtain large heavy doped NaI:TI crystal we recommend NaI:TI,NO₂ scintillation material for crystal growth.

Concentration dependences of light yield

Density of *e-h* pair in electron track:

$$\begin{cases} 2.2 \cdot 10^{18} \text{cm}^{-3} \text{ for } 662 \text{ keV } (1, \gamma) \\ 7.3 \cdot 10^{18} \text{ cm}^{-3} \text{ for } 5.9 \text{ keV } (2) \\ 1,3 \cdot 10^{19} \text{ cm}^{-3} \text{ for } \alpha (5,15 \text{ MeV}) \end{cases}$$

Volume density *dE/dx*³ is increased 3 times in L-deep

Nucl. Instr. Meth., vol. A486 (2002) 474

