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3-D Radome-Enclosed Aperture Antenna Analyses
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Abstract—Physical optics integral representations of the fields
are given for the 3-D model of the aperture antenna with specified
ampliphase excitation law enclosed in a radome. The problem is
reduced to finding fields of a plane wave diffracted on the “sym-
metrized” radome. This model is used for calculations of radiation
patterns and for analyses of far-field radiation. Peculiarities of the
ray pattern and caustics are analyzed using geometrical optics (ge-
ometrical theory of diffraction) method. The contribution of the
stationary phase points in the aperture to the far-side radiation has
been investigated. Results of numerical calculations are presented.

Index Terms—Aperture antenna, geometrical optics, geomet-
rical theory of diffraction, physical optics, radomes, sidelobe
supression.

I. INTRODUCTION

R ADOMES are an inevitable component of antenna sys-
tems and radars, both airborne and ground-based. Reflec-

tions of an antenna field from the inner walls of the radome
may cause significant pattern deformations and increase side-
lobe levels. Although various integral equation techniques and
FDTD methods [1]–[4] have been employed for radome sim-
ulation during the last decade, asymptotic approaches (see, for
example, [5]–[10]) are still more suitable for 3-D modeling of
electrically large radomes due to low computational costs.

Aperture antennas in an inhomogeneous medium have been
studied for various applications. In [11] the aperture antenna lo-
cated below a linearly inhomogeneous semispace was studied in
the context of hydroacoustic or troposphere wave propagation.
The method proposed in [12] adopted a ray tracing technique to
obtain a projected image of source distribution.

Most of aperture antenna models (considered with respect to
radomes, for example in [5]–[7]) can be interpreted as a flat
aperture with a perfectly electrically conducting flange. How-
ever, this approximation provides valid results only for the main
lobe and first sidelobes of directivity pattern. In contrast with
this approach, another useful interpretation of aperture antenna
as a hole in an ideally black screen was proposed in [13]. In this

Manuscript received February 15, 2009; revised March 10, 2010; accepted
March 22, 2010. Date of publication June 14, 2010; date of current version
September 03, 2010.

I. V. Sukharevsky (retired) was with the Military Academy of Air Defence,
Kharkov 61077, Ukraine (e-mail: i_sukharevsky@rambler.ru).

S. E. Vazhinsky is with the National Academy of Defence of Ukraine, Kiev
03048, Ukraine (e-mail: sevzhasmin@mail.ru).

I. O. Sukharevsky is with the Institute for Radiophysics and Electronics of
National Academy of Sciences of Ukraine, Kharkov 61085, Ukraine (e-mail:
i.sukharevsky@gmail.com).

Digital Object Identifier 10.1109/TAP.2010.2052548

case, the incident field is absorbed by flanges; hence, the reflec-
tion from “fictitious” flanges does not contribute to the far-side
radiation of the antenna system.

Here we employed a mathematically strict model of the
radome-enclosed aperture antenna [14] based on the general-
ized principle of mirror images. It allows us to generalize the
method of equivalent currents for aperture antenna calcula-
tions [13] in cases when the aperture antenna radiates to the
semispace in the presence of arbitrary scatterers (dielectric,
conducting or magnetic bodies). Simple, exact and approxi-
mate formulae have a clear physical interpretation and allow to
calculate correctly directivity pattern in the whole semispace.
The problem of antenna radiation is reduced to the diffraction
of a plane wave on the “symmetrized” radome (the similar
“symmetrized” model was used in [15] for simulating of a
radome-enclosed dipole array backed by a ground plane in
2-D, and in [16] for representations of the fields of an aperture
antenna enclosed in a spherical chiral radome).

The electromagnetic wave incidence can be calculated with
a conventional geometrical optics (GO) method or geometrical
theory of diffraction (GTD) algorithm. The first GTD consider-
ation of diffraction on the layer was made by J.B. Keller [17].
Keller supposed the layer to be homogeneous and equidistant
and described the field via integral equations derived easily from
Green’s formulae. Fixing (the wave number in a free space)
and expanding all functions into series of (layer thickness),
Keller obtained the first term of a diffracted field expansion
and evaluated it with the stationary phase method for big .
However, results obtained via this method are valid only when

. The correct asymptotic consideration can be held only
with respect to a prior relations with respect to . The method
based on a combination of ray techniques and boundary-layer
expansions allowed to solve this 3-D problem of diffraction on
a thin layer in cases and [18], [19], and

[20]. Heuristic assumption about the primary field
representations in [18]–[20] was justified by the exact Green’s
function asymptotics of a point source in the presence of a thin
layer obtained in [21]. In [22] this method was applied for the
purpose of acoustic diffraction. It should be noted, that the first
term of the expansion of the diffracted plane wave coincides
with GO solution on the flat layer, and the next terms of expan-
sion give corrections on curvature, non-equidistance, etc. These
GTD methods consider slightly curved layers. However, diffrac-
tion from a tightly curved tip can be taken into account, as shown
in [23].

Here the wave passage through the radome layer is calculated
with the same accuracy as in [5]. However, the caustic influence
on the fields reflected from the radome is taken into account.
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Fig. 1. Problem geometry. Aperture antenna � enclosed in radome � .

Using the developed hybrid PO/GO (PO/GTD) algorithm we
show that radar-induced distortions of the far-field pattern are
mainly caused by the reflections from a small area of the radome
wall associated with a stationary phase point in the aperture.
This may open crucial opportunities to suppress far sidelobes
(for example, by disconnecting corresponding elements of an-
tenna array). Detection of stationary phase points can be also
used for asymptotic approximation of the field by the method of
stationary phase in 3-D, as it is done in [6] in 2-D case.

Sections II is devoted to the integral representation of a field
radiated by the discussed system. The ray pattern and caus-
tics are analyzed by GO (GTD) techniques in Section III. The
detection of the stationary phase points (SPPs) is analyzed in
Section IV. The results of 3-D modeling of a circular aperture
antenna enclosed with a parabolic radome in support of our con-
cept about the significant SPP influence on the far-side radiation
field are presented in Section V.

II. INTEGRAL REPRESENTATIONS OF THE FIELDS

Introduce Cartesian coordinates . Let aperture
is in the plane and radiates to the semi-space

(Fig. 1). Radiated field , is induced by
some sources in semi-space . Domain contains
dielectric radome with permittivities , (generally,
variable). Consider two assumptions about the physical prop-
erties of surface :

A— is the ideally conducting surface ;
B— is the ideally magnetic surface .

Denote and for the fields induced by
aperture in domain in problems A and B. Consider also their
half sums

(1)

“Averaged” field (1) can be interpreted as a field corresponded
to Macdonald’s model [24] of ideally black surface . Using
Lorentz lemma and generalized principle of mirror images [14],
derive for any point and any vector of receiving polar-
ization

(2)

Fig. 2. “Symmetrized” radome.

where , is the unit vector, normal to and directed
to ; , is electromagnetic field induced by a point source
(electric dipole) in a space containing a closed dielectric shell,
which is symmetrical with respect to plane (Fig. 2).

From exact formulae (2) go to the approximation of physical
optics. When edge effects in the aperture are small

Then, omitting indices A, B, we get

(3)

Right-hand integral (3) expresses field of the radiating aper-
ture through the given distributions of , in the aperture, and
the field, diffracted on the “symmetrized” radome. Equation (3)
means that in the inhomogeneous medium the field, calculated
by the method of equivalent currents, coincides (in PO approxi-
mation) with “averaged” field of Macdonald model. Thus, these
formulae generalize results of [13] for the case of inhomoge-
neous medium.

From (2) and (3), obtain formulae for complex directivity pat-
tern of radiating system , where is a unit vector of an
observation point in far-zone

— Exact formulae

(4)

— Approximate PO formula; , is aperture distribution of
tangential field in Kirchhof’s approximation; , is a
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Fig. 3. Ray pattern.

field of a plane wave propagating in the direction ,
which passed through the radome

where , , are permittivities and a wavenumber in
free space, respectively.

Assume , as a sum of the field re-
flected from the inner wall S of the radome and the field passed
through the radome directly to the aperture (Fig. 3). Multi-re-
flections provide scattered field corrections of a higher order, so
can be neglected due to electrically large sizes of the radome.

III. PLANE WAVE PASSAGE THROUGH THE RADOME WALL

For simplicity of presentation, let layer be equidis-
tant. Take into consideration curvilinear coordinates
counted along the lines of curvature in the point of reflection

on the internal surface of the radome.
Represent the incident wave, diffracted wave on the internal

surface of the radome, and the reflected wave, respectively, as

(5)

(6)

(here is the point of the reflection)

(7)

In (7) , where

(8)

where is the normal unit vector; see Fig. 3.
Phases of each of the fields (5)–(7) are equal to the same value

in a point .
Vectors , are GO vector amplitudes or the first terms

of asymptotic expansion [18] ( ; ,
, where is the largest curvature of a radome surface and a

wave-front).

Fig. 4. Local coordinates.

The reflected field along the beam
represent via the well-known expression [25]

(9)

where is the Jacobian of
transition from beam coordinates to Cartesian ones.

A. The Development of . Caustic Surfaces

Let S be a fairly smooth strictly concave surface. Assume that
is a part of the surface S, where the normal unit

forms an acute angle with the given unit vector (Fig. 3).
Let ( ; ) be the main curvatures in point of
reflection , and , are the corresponding unit
vectors (Fig. 4).

As we have described

(10)

(11)

with on the surface , are angles be-
tween vector and vectors , respectively.

The reflected beam can be given by equation

Taking into account (10) and (11), we derive

where .
In particular 2D case ( ; ) we have
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Thus, in formula (9)

A discriminant of can be presented either as

(11a)

or

(11b)

From (11b) follows that the roots of the considered polyno-
mial are real:

but since (11a) shows that

Finally, we get

Hence, in the discussed 3D case caustic surface is
comprised of two connected components, described in the beam
coordinates as , . Asymptotic ap-
proximation (9) is valid while moving along the reflected beam
from to the value (where is some fixed pos-
itive number), but loses its physical meaning nearby , be-
cause the one-to-one correspondence between the Cartesian and
beam coordinates is not fulfilled. However [26], after passing
the critical value the beam approximation is valid again, but in
the modified form: after touching a beam caustic, wave phase
declines as a leap on . The similar phenomenon is occurring
in the transition through the critical value .

B. Stationary Phase Points of the Reflected Field

Let be the equation of the inner surface S of
the dielectric radome, either homogeneous or stratified.

Suppose the incident wave field has a flat front with a phase
and on (Fig. 3); so that

in accordance to (7), the beam reflected from S in a point
has the phase

(12)

For generality, assume the presence of currents performing
electrical scanning in the direction . The corresponding math-
ematical model is the additional term , in the
expression for the phase function. Instead of (12) we have

(13)

where , .
From the balance it is easy to imply

(14)

With very broad assumptions about the surface , system of
functions (14) is locally reversible in the neighborhood of each
regular point and inverse
functions , are differentiable in the corre-
sponding point .

Go to the study of phase-function derivatives.
In the vicinity of each regular point and

, so . Therefore,
vector of a variable point on can be considered as a function
of curvilinear coordinates and : , and the
derivatives , are vectors tangential to .

Taking into account that

(15)

In consequence of (8) and the apparent equality
, obtain

and since , ( ; 2), equality (15) becomes

Hence the following important sentence results.
Theorem: If the system of equations

(16)

has some solution and , then
the values , expressed through this solution via for-
mulae (14), are the stationary coordinates of a phase function

.
Thus, the detection of SPP in the aperture and finding their

coordinates reduce to the effective solving of system of (16).
Turn now to this problem. Fix the unit vectors of radiation

and scanning

(17)

where ; ; .
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Using (8), (16), (17) and denoting ; ,
system of (16) takes the form

(18)

(19)

where

It follows from (18), (19) that:

(20)

Denote the value of ratio (20) as

(21)

after substitution in (18) or (19), derive

where ; , and, finally, the equation
for

whence two solutions can be found

Substituting in formulae (21), we obtain the first
solution of system of (18), (19)

(22.1)

Analogously, the second solution of (18), (19) can be ob-
tained using

(22.2)

Therefore, (18), (19) has two solutions: (22.1) and (22.2).
Physical meaning of this ambiguity is determined by conditions
to obey the desired solution beside (18), (19). Demonstrate this
fact for the case when azimuthal angles of vectors and co-
incide: . As is easy to see

(23.1)

(23.2)

Look now at the expression for the component derived
from (8), (17)

(24)

Substitution of expressions (23.1) and (23.2) in (24) provides

the following results: ; .
However, the second variant contradicts the problem geom-

etry: reflected beam directed along is to be directed down to
the antenna aperture. Thus, we have only one physically mean-
ingful solution: .

IV. NUMERICAL RESULTS

Consider circular aperture of radius ( is the wave-
length in the free space) with cosine-law amplitude distribution
(represented by , in (4)) placed symmetrically to the axis
of a parabolic radome, whose surface equation is

Parameters of the radome are: , the depth of the
radome , the dielectric permittivity , and the
thickness is matched for the normal incidence.

The unit polarization vector of currents in the aperture is
.

Using formula (4) we calculated radiation patterns in H-plane
( , ; Fig. 5) and compared
them with the radiation patterns of the aperture enclosed in a
semi-spherical radome, with radius . Scanning was
carried by vector . All radiation patterns
were normalized to the maximum of the radiation pattern
without a radome.

Note, that the radiation pattern of a circular aperture without
electrical scanning [Fig. 5(a)] coincides with the corresponding
pattern of [27], where it was computed by exponential approxi-
mation of Bessel function.

A significant increasing of the sidelobe level in the far zone is
observed in comparison with the radiation pattern of an aperture
without radome in H-plane. Far sidelobes grow by 15–20 dB.
This phenomenon is caused by reflections from the small area
(less than 1% of surface of the radome inner wall), associated
with a stationary phase points. For example, contribution of such
area to the total reflected field for without scanning is
equal to 85 per cents. The main lobe decreases by 0.6 dB.

The radiation pattern for a semi-spherical radome is much
more distorted compared to a parabolic radome for the case of
a cosine-law distribution; however, this effect is less explicit for
a constant amplitude and phase distribution [Fig. 5(b)].

With increasing of scanning angle, the pattern symmetry is
breaking and far sidelobes are broaden and considerably dis-
torted [Fig. 5(c)].

V. CONCLUSIONS

The offered method allows to calculate the radiation field of
an aperture antenna in the presence of arbitrary radome or (with
some modifications) of any scatterers. It is equally applicable to
study fields both in the near and far zones of a radome.

For correct calculation of GO (GTD) passage of a wave
through the radome, the caustic behavior is analyzed.

The existence and coordinates of stationary phase points of
the reflected field in the aperture can be recognized via the
following developed algorithm.
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Fig. 5. Radiation patterns of the circular aperture antenna with the parabolic
radome (black line), the semi-spherical radome (black dashed line), and without
radome (gray line) in H-plane. (a) Without scanning for cosine amplitude dis-
tribution. (b) Scanning under an angle of 5 for cosine amplitude distribution.
(c) Without scanning for constant distribution.

1) With given vectors of radiation and of scanning,
solve the system of (18), (19) and choose the solutions
(points lying in the domain .

2) Using formulae (19), determine the points of plane
with coordinates corresponding to each found
solution of (18), (19).

3) Among these points choose those that belong to the
domain (i.e. the aperture of the considered antenna
system) and thus obtain the desired set of stationary phase
points of the field reflected from .

A practical significance of these derivations is to build a grid
of stationary phase points (SPP) whose local neighborhoods
contribute significantly to the lateral radiation of the antenna
system. In doing so may open opportunity of compensation
of this contribution by technical devices. Neighborhoods of
SPPs contribute significantly to the level of the reflected field
(60–85% of the total value of reflections). Sizes of these areas

are quite small and do not overcome 2% of an aperture size.
These results can be also used for field evaluation by the method
of stationary phase.
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