МИНИСТЕРСТВО ПО ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ РЕСПУБЛИКИ БЕЛАРУСЬ

КОМАНДНО-ИНЖЕНЕРНЫЙ ИНСТИТУТ

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ЗАЩИТЫ ОТ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Сборник тезисов докладов Международной научно-практической конференции

26-27 сентября 2013 года

Минск КИИ 2013

Организационный комитет конференции:

председатель — канд. тех. наук, доцент, начальник КИИ МЧС РБ И.И. Полевода; сопредседатель — проректор по научно-исследовательской работе Львовского государственного университета безопасности жизнедеятельности Т.Е. Рак;

члены организационного комитета:

канд. псих. наук, доц., первый заместитель начальника КИИ МЧС РБ А.П. Герасимчик; канд. юрид. наук, доц., ученый секретарь Совета – помощник начальника КИИ МЧС РБ И.В. Голякова;

канд. истор. наук, доц., нач. кафедры ГН КИИ МЧС РБ А.Б. Богданович;

канд. техн. наук, доц., нач. ОООНиПП МЧС РБ А.Г. Иваницкий;

канд. физ.-мат. наук, доц., зав. каф. ЕН КИИ МЧС РБ А.В. Ильюшонок;

канд. физ.-мат. наук, доц., зам. начальника КИИ МЧС РБ А.Н. Камлюк;

канд. техн. наук, доц., начальник кафедры ПиПБ КИИ МЧС РБ С.М. Пастухов;

канд. техн. наук, начальник кафедры ПАСТ КИИ МЧС РБ В.В. Лахвич;

канд. техн. наук, доц., ученый секретарь Уральского ин-та ГПС МЧС России С.В. Субачев;

ответственный секретарь – E.A. Петрико

Инновационные технологии защиты от чрезвычайных ситуаций: С23 сборник тезисов докладов Международной научно-практической конференции. – Минск: КИИ, 2013. – 277 с. ISBN 978-985-7018-31-4

Тезисы не рецензировались, ответственность за содержание несут авторы.

УДК 614.8:001.895 (063) ББК 66.72 (2) 92

ISBN 978-985-7018-31-4

© Государственное учреждение образования «Командноинженерный институт» МЧС Республики Беларусь, 2013

Рыбалова О.В., Коробкова А.В. Оценка риска для здоровья населения	
Харьковской области при рекреационном водопользовании	262
Семерак М.М., Субота А.В. Огнестойкость несущих конструкций	
машинных залов электростанций в условиях пожара	263
Сукач $HO.\Gamma$., Бабаджанова $O.\Phi$. Опасности породных отвалов	
угледобычи	264
Суриков $A.B.$, $Aбдрафиков$ $\Phi.H.$ Установка для проведения	
аэродинамических испытаний систем вентиляции и дымоудаления	265
Суриков А.В., Лешенюк Н.С. Влияние условий испытаний на	
определение дымообразующей способности материалов	266
Токарчук С.М., Москаленко Е.В. Гидроэкологические аспекты опасных	
метеорологических явлений на территории Беларуси	267
Федоренко Д.С., Словинский В.К. Методика оценки вероятного ущерба	
от последствий ЧС и оптимизация затрат на обеспечение безопасности	
предприятия	268
Федоренко Д.С., Словинский В.К. Механизмы управления	
чрезвычайными ситуациями	269
Федюк Я.И., Лавривский М.З. Управление безопасности	
жизнедеятельности регионов с помошью ДЗЗ	270
Ференц Н.А., Кучерява М.Н. Оценка безопасной площади	
разгерметизации аппаратов взрывопожароопасных производств	271
Ференц Н.А., Павлюк Ю.Э. Критерий индивидуального риска при	
определении категорий внешних технологических установок	272
Ширко А.В., Камлюк А.Н., Кудряшов В.А., Чиркун Д.И. Оценка	
огнестойкости железобетонных конструкций каркасных зданий при	
пожаре	273
Shelyh Y.E., Havrys A.P. Modern methods of risk assessment in emergency	
events of Ukraine	275

СЕКЦИЯ 1

СОЦИАЛЬНО-ПРАВОВЫЕ, ЭКОНОМИЧЕСКИЕ И ИНФОРМАЦИОННЫЕ АСПЕКТЫ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Рыбалова О.В., Коробкова А.В.

Национальный университет гражданской защиты Украины, Украинский научно-исследовательский институт экологических проблем

ОЦЕНКА РИСКА ДЛЯ ЗДОРОВЬЯ НАСЕЛЕНИЯ ХАРЬКОВСКОЙ ОБЛАСТИ ПРИ РЕКРЕАЦИОННОМ ВОДОПОЛЬЗОВАНИИ

Территория бассейна реки Северский Донец является наиболее урбанизированным и индустриально-развитым регионом Украины с интенсивным сельским хозяйством. Поэтому очень актуальной задачей является оценка качественного состояния водотоков бассейна реки Северский Донец в пределах Харьковской области с целью определения опасности рекреационного водопользования и приоритетности внедрения необходимого комплекса природоохранных мероприятий.

Сегодня одним из наиболее эффективных современных подходов к установлению связи между состоянием окружающей среды и здоровьем населения в определенном регионе или городе являются методы оценки риска для здоровья населения [1,2]. Методология оценки риска направлена на выбор оптимальных в данной конкретной ситуации путей устранения или уменьшения риска и состоит из трех взаимосвязанных элементов: оценка риска, управление риском, информирование о риске. Именно их совокупность позволяет не только выявить существующие проблемы, разработать пути их решения, но и создать условия для практической реализации этих решений.

Оценка канцерогенного риска при рекреационном использовании водных ресурсов реки Северский Донец в Харьковской области показала, что он является приемлемым. А оценка неканцерогенного риска показала повышенную опасность водопользования р.Северский Донец, особенно в городе Изюм (HI = 59,5), с. Хорошево (HI = 52,3) и Эсхар (HI = 49,7). Расчет индекса опасности показал, что при рекреационном использования р.Северский Донец наибольшая вероятность возникновения болезней печени, почек, крови и сердечно-сосудистой системы.

Ранжирование постов наблюдения за качественным состоянием реки Северский Донец в Харьковской области по величине индекса опасности показало необходимость внедрения природоохранных мероприятий в районе расположения г. Изюм, с. Хорошево, с. Эсхар и в Харьков.

ЛИТЕРАТУРА

1.U.S. Environmental Protection Agency (EPA). Integrated Risk Information System (IRIS) [Електронний ресурс]. – Режим доступу: http://www.epa.gov/iris 2. Киселев А.Ф. Оценка риска здоровью [Текст] / А.Ф. Киселев, К.Б. Фридман. – СПб. : Питер, 1997. – 100 с.

Семерак М.М., Субота А.В.

Львовский государственный университет безопасности жизнедеятельности

ОГНЕСТОЙКОСТЬ НЕСУЩИХ КОНСТРУКЦИЙ МАШИННЫХ ЗАЛОВ ЭЛЕКТРОСТАНЦИЙ В УСЛОВИЯХ ПОЖАРА

Для безопасной и надежной работы систем охлаждения турбогенератора атомных и тепловых электрических станций используется специальная маслосистема для подачи масла к уплотнениям турбогенератора, предотвращающая утечку водорода из его корпуса через уплотнения вала.

Основная причина обрушения несущих металлических конструкций — горение большого количества водорода и пролитого турбинного масла, в результате поломки систем охлаждения и уплотнения турбогенератора. В последствии чего образуются интенсивные тепловые потоки, излучаемые факелом пламени горения смесей водорода с воздухом и турбинным маслом. При локальном воздействии восходящих тепловых потоков может произойти нагрев незащищенных металлических конструкций до критической температуры (500-550 °C), при этом потеря несущей способности конструкции может наступить значительно раньше проектного значения REI 15.

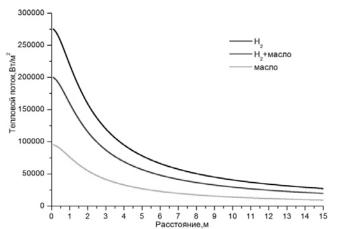


Рис. 1. Зависимость величины теплового потока от расстояния между конструкцией и факелом пламени

работе разработана модель математическая определения И исследования теплового потока от факела пламени пожара при горении смесей водорода cводорода воздухом, cтурбинным маслом И разлитого турбинного Зависимость масла [1]. величины теплового потока OT расстояния

между строительными конструкциями и факелом пламени пожара показана на рисунку. Учитывая величины теплового потока, длительность пожара, толщины конструкций и огнезащитного покрытия, их теплофизических характеристик определено и исследовано температурное поле по толщине металлических конструкций (несущие колоны и стропильные фермы перекрытия) машинных залов электростанций [2].

ЛИТЕРАТУРА

- 1. Р. Зигель. Теплообмен излучением/ Р.Зигель, Дж.Хауэлл. М.: Изд. «МИР». 918.
- 2. Лыков А.В. Теория тепропроводности. М.: Высшая школа, 1967. 600с.