

The results of researches of thermodynamically stable barium ferrites are given. The base of the thermodynamic data (enthalpies, entropies and equation factors of the thermal capacity) which are necessary for research of the multycomponent systems with barium ferrites in their composition is created.

,

,

_

,

•

:

[1 – 3].

1		2.
-	•	

			1	baO – Al	$1_2 O_3 - Fe_2 O_3 - S$	\mathbf{SIO}_2
	- 298,		- G ₂₉₈ ,	-	S ₂₉₈ ,	-
	/	-	/	-		-
					/	
BaO	558,15	4	528,44	4	70,29	4
- BaCO ₃	1218,80	4	1138,89	4	112,13	4
$-BaCO_3$	-		-		-	
- BaCO ₃	-		-		-	
CO ₂	393,51	4	394,38	4	213,94	4
Fe ₂ O ₃	821,36	4	739,61	4	89,96	4
BaFe ₁₂ O ₁₉	5886,09	5	-		609,19	7
BaFe ₂ O ₄	1282,81	6	1451,85	8	158,99	8
Ba ₂ Fe ₂ O ₅	1763,97	7	2069,66	7	229,07	7
Ba ₃ Fe ₂ O ₆	2620,61	7	-		312,63	7
Ba ₅ Fe ₂ O ₈	3635,56	7	-		509,76	7
Ba ₇ Fe ₄ O ₁₃	5541,71	7	-		687,26	7
$Ba_2Fe_6O_{11}$	3752,80	7	-		437,14	7

1

 $BaO - Al_2O_3 - Fe_2O_3 - SiO_2$

2

 $BaO - Al_2O_3 - Fe_2O_3 - SiO_2$ $= + * + * ^{-2},$, 10³ - 10⁻⁵ BaO 298-1270 53,30 4,35 8,3 4 4 - BaCO₃ 4 4 86,96 48,99 11,97 1079 $-BaCO_3$ 154,91 4 1079-1241 4 --- BaCO₃ 4 4 163,29 1241 CO_2 44,14 9,04 8,54 4 298-2500 4 98,28 77,82 4 298-950 4 Fe₂O₃ 14,85 4 4 Fe₂O₃ 150,62 -950-1050 4 132,63 1050-1750 4 7 7 BaFe₁₂O₁₉ 348,60 1168,82 298-725 -695,79 154,60 7 298-1723 7 20,88 6 BaFe₂O₄ 172,38 15,94 6 -7 7 Ba₂Fe₂O₅ 295,03 -51,09 -90.80 7 7 $Ba_3Fe_2O_6$ 219,03 14,48 298-1588 7 7 $Ba_5Fe_2O_8$ 288,11 150,90 6,05 298-1423 298-1598 112,10 37,99 7 7 $Ba_7Fe_4O_{13}$ 506,88 59,91 7 7 $Ba_2Fe_6O_{11}$ 398,94 119,50 298-1643

200 - 600 .

$$BaO - Fe_2O_3$$
,

,

 $BaCO_3 + Fe_2O_3 = BaFe_2O_4 + CO_2$

,

:

,

$2BaCO_3 + Fe_2O_3 = Ba_2Fe_2O_5 + 2CO_2$ $2BaCO_3 + 3Fe_2O_3 = Ba_2Fe_6O_{11} + 2CO_2$ $3BaCO_3 + Fe_2O_3 = Ba_3Fe_2O_6$ $+ 3CO_2$ $5BaCO_3 + Fe_2O_3 = Ba_5Fe_2O_8 + 5CO_2$ $7BaCO_3 + 2Fe_2O_3 = Ba_7Fe_4O_{13} + 7CO_2$

:

. 1 2.

	Fe_2O_3	950 1050 BaCO ₃		
1079	1241 ,	$BaFe_{12}O_{19}$,	-
		[10]		

[10].

[7, 11,

12],

 $BaCO_3 + Fe_2O_3 = BaFe_2O_4 + CO_2$: 400 - 950 $G(T) = 161692,65-31,34T \cdot \ln T + 0,048T^2 - 117828/T + 18,55T$ 950 - 1050 $G(T) = 168851,39+21,00T \cdot \ln T + 0,01T^2 + 624672,00/T - 311,98T$ 1050 - 1079 $G(T) = 164374,86+3,01T \cdot \ln T + 0,019T^2 + 624672/ -194,47T$ 1079 - 1241 $G(T) = 194139,83+70,91T \cdot \ln T - 0.005T^2 + 1222984/T - 686,09T$ 1241 $G(T) = 201595,72+79,28T \cdot \ln T - 0.005T^2 + 1222984/T - 753,88T$

$$2BaCO_3 + Fe_2O_3 = Ba_2Fe_2O_5 + 2 CO_2$$

$$400 - 950$$

$$G(T) = 226816,74 - 111,24T \cdot \ln T + 0,079T^2 + 1467344/T + 385,77$$

$$950 - 1050$$

$$G(T) = 233975,48 - 58,90T \cdot \ln T + 0,040T^2 + 2209844/T + 55,24$$

$$1050 - 1079$$

$$G(T) = 229498,94 - 76,85T \cdot \ln T + 0,05T^2 + 2209844/T + 172,74$$

$$1079 - 1241$$

$$G(T) = 289028,90 + 58,93T \cdot \ln T + 0,001T^2 + 3406480/T - 810,5$$

 $1241 \\ G(T) = 303940,67+75,66T \cdot \ln T + 0,001T^2 + 3406468/T - 946,06$

$$\begin{split} 2BaCO_3 + 3Fe_2O_3 &= Ba_2Fe_6O_{11} + 2CO_2\\ &400 - 950\\ G(T) &= 362107,84 - 18,59T \cdot \ln T + 0,097T^2 + 423344/T - 280,03\\ &950 - 1050\\ G(T) &= 383584,05 + 138,43T \cdot \ln T - 0,02T^2 + 2650844/T - 1271,62\\ &1050 - 1079\\ G(T) &= 370154,45 + 94,46T \cdot \ln T + 0,01T^2 + 2650844/T - 919,03\\ &1079 - 1241\\ G(T) &= 429684,40 + 220,28T \cdot \ln T - 0,039T^2 + 3847468/T - 1902,37\\ &1241\\ G(T) &= 444596,18 + 237,01T \cdot \ln T - 0,0039T^2 + 3847468/T - 2037,93 \end{split}$$

$$\begin{split} 3BaCO_3 + Fe_2O_3 &= Ba_3Fe_2O_6 + 3CO_2 \\ &400 - 950 \\ G(T) &= 667110,25 + 7,52T \cdot \ln T + 0,053T^2 - 535484/T - 614,57 \\ &950 - 1050 \\ G(T) &= 658671,56 + 13,83T \cdot \ln T - 0,014T^2 + 207016/T - 594,58 \\ &1050 - 1079 \\ G(T) &= 669792,45 + 41,87T \cdot \ln T + 0,024T^2 + 207016/T - 827,6 \\ &1079 - 1241 \\ G(T) &= 759087,38 + 245,59T \cdot \ln T - 0,049T^2 + 2001952/T - 2302 \\ &1241 \\ G(T) &= 781455,04 + 270,69T \cdot \ln T - 0,049T^2 + 2001952/T - 2505,8 \\ \end{split}$$

$$\begin{split} 5BaCO_3 + Fe_2O_3 &= Ba_5Fe_2O_8 + 5CO_2\\ 400 - 950\\ G(T) &= 1333798,66 + 23,95T \cdot lnT + 0,063T^2 - 1301640/T - 1146,38\\ 950 - 1050\\ G(T) &= 1340957,39 + 76,29T \cdot lnT + 0,0024T^2 - 559140/T - 1476,91\\ 1050 - 1079\\ G(T) &= 1336480,86 + 58,30T \cdot lnT + 0,034T^2 - 559140/T - 1359,41\\ 1079 - 1241 \end{split}$$

$$\begin{split} G(T) &= 1485305,74 + 397,83T \cdot \ln T - 0,088T^2 + 2432420/T - 3817,51 \\ & 1241 \\ G(T) &= 1522585,18 + 439,67T \cdot \ln T - 0,088T^2 + 2432420/T - 4156,42 \\ & 7BaCO_3 + 2Fe_2O_3 = Ba_7Fe_4O_{13} + 7CO_2 \\ & 400 - 950 \\ G(T) &= 1894489,85 - 11,03T \cdot \ln T + 0,161T^2 - 791796/T - 1236,36 \\ & 950 - 1050 \\ G(T) &= 1908807,32 + 93,65T \cdot \ln T + 0,084T^2 + 693204/T - 1897,42 \\ & 1050 - 1079 \\ G(T) &= 1899854,26 + 57,67T \cdot \ln T + 0,104T^2 + 693204/T - 1662,41 \\ & 1079 - 1241 \\ G(T) &= 2108209,09 + 533,02T \cdot \ln T - 0,068T^2 + 4881388/T - 5103,75 \\ & 1241 \\ G(T) &= 2160400,31 + 591,59T \cdot \ln T - 0,068T^2 + 4881388/T - 5578,22 \end{split}$$

. 3, 4.

-

 $MFe_{12}O_{19}$ (M = Pb, Sr, Ba), // . –1992. -.66, .7. – . 2578-2581. **6.** . ., , 1972. – 350 . **7.** . – .: · ·, « // . ۰, . . : ~ _ . . - 1998. – .6, . 3. – .35-40. **8.** : ». – . . . -1979. - . 9. - 574 . **9.** .: : , 1962. – 223 . **10.** . ., . ., . // . -1980. - .16, . 1.- .138-141. **11.** , 1974.–132 . .: . . 12. . ., $BaO - Fe_2O_3 //$. VII . « ».- .-1998.- .153.

11.10.06.

_

,

,

544.344.3, 544.971

.

 $SrO - BaO - TiO_2$

			•
298,	S 298,	= f(),	-
	$SrO - BaO - TiO_2$,		-

In article there were calculated output thermodynamic data: enthalpy H^{o}_{298} , entropy S^{o}_{298} , dependence formula of heating capacity from temperature Cp = f(T) for some combinations of system SrO – BaO – TiO₂ by different methods. This is important for carrying out thermodynamic analysis of phase equilibriums in this system.