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The Reliability Prediction of Structures with Random Parameters
Subjected to Stationary Stochastic Input

V. A. Zhovdak, S. P. Iglin, I. V. Mishchenko

The structural elements reliability prediction problem is investigated. At random loads, structure parameter
randomness and fatigue failures are taken into account in this paper. External loads are assumed to be a
vector space-time random field, and the parameters of the structures investigated are assumed to be random
variables with known probabilistic characteristics. The reliability prediction problem includes three stages. At
the first stage, the stochastic dynamics problem is solved using correlation theory relations. It concerns the
definition of the stress-strain state (SSS) characteristics conditional correlation function and power spectral
density (PSD) taking account of external random loads with the fixed parameters of the investigated structure.
At the second stage, the SSS correlation functions and PSDs are defined taking account of structural element
randomness. At the third stage, the reliability characteristics definition problem due to fatigue failures is
solved.

1 Introduction

Many civil engineering structures are subjected to cyclic random loads (Bolotin, 1979), which may lead to
fracture due to fatigue damage accumulation. Besides, the structure parameters are random as a consequence of
manufacture imperfection, structure material physical properties non-homogenity and other random factors.
The mentioned factors lead to the necessity in the structure’s design to take into account the randomness of
external loads and structural properties. At present the Finite Element Method (FEM) is widely used to
investigate various complicated structural elements. This method may be used effectively to solve the reliability
problems due to fatigue failures. These failures occur in the structural elements under external loads given as a
random field and structure random parameters given as a random variables vector.

The phenomenological approach using various kinetic equations for harmonic loads is to describe a cumulative
fatigue damage measure (Pavlov, 1988; Bolotin, 1984). Kinetic equations may be utilized in the case of
broadband random loads if an initial process leads to a process with an equal-in-damage effect. The Markov
process mathematical means are widely used to solve the reliability problem using kinetic equations describing
a damage measure.

Accordingly, in this paper the structural elements reliability prediction approach is being worked out taking
into account external loads and structure property randomness using FEM and Markov process theory.

2 The Stochastical Dynamics Problem Solution of a Structure with Deterministic Parameters

The stochastical dynamics problem dealt with here is for deterministic structures subjected o an external input
as a vector space-time random field. The external load field intensity vector F(r,) is assumed to be stationary
on a time coordinate and homogeneous on a space coordinate. It is defined by the mean value m = < F(r,1)>

and the correlation tensor

K(n.timdy)=<F(n.a)F(nt)>=Kg(p.t)= '[S[, (p.w)e " dw (2.1)

with T=1,—1,:p=r,—r; and where < > denotes the expected value operation; F(r,r)=F(r,z)-m;

Se (p,(o) denotes the time PSD, possessing the correlation tensor property with respect to the variable ® .
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One of the simplest models of a random external load vector field F(r,?) is
F(r.)=F (1) F,(r) (22)

where F(r,1) is a separable function of  and r. In the particular case the external loads depend on the time
coordinate only F(r,r)=F(z) which is a vector random function.

After the finite element discretization a matrix differential equation describing a structural element random
vibration is given by

MY() + CY(r) + KY(r) = X(r) 23)

where M, C, K denote mass, damping, and stiffness matrices respectively having random parameters
S(i=1,....,m), while X(z),Y(t) are the external nodal input and generalized nodal displacements n-

dimensional vectors, respectively, components of which are random functions with respect to a time coordinate.
A damping matrix C is assumed to be present as a linear combination of the matrices K and M.

C = B,M+B,K , (24)
where B, and B, denote the internal and external friction factors.

In equation (2.3) mass, damping, and stiffness matrix coefficients have the random parameters S; as
independent random variables with given probabilistic characteristics: mean value m, , variance O‘f , and

probability density function (PDF) f; (s,»). The parameters S, (i = lm) mentioned form the vector S and

relate the inertia, stiffness and geometric properties or material physical properties of each structural element
considered (Gallagher, 1984).

If a structure is subjected to a vector distributed load characterized by the intensity vector F(r,t), a component
of which is to be the random stationary homogeneous field with given probabilistic characteristics, one can
obtain the equivalent nodal load vector X ( ¢ ) according to FEM general theory.

Let us consider an i-th finite element which is assumed to be subjected to a uniformly distributed surface load
F(r,,t) (r is the center of gravity coordinate). In this case the equivalent nodal load vector for the i-th

1

element may be presented as

X, = J.B,T(r) F(r, I)dr (2.5)
)

[

where 8, is the element cross-section, B,(r) denotes the matrix connected the vector u; of the generalized
displacements in any i-th element point with the generalized nodal displacements vector Y; . Since the load

intensity F(r, t) in the i-th element limits is assumed to be constant, the expression (2.5) can be written as
Xl(f)%_l‘B,T(") F(r.1)=B] F(r.1) (2.6)

The full vector X(7) of the structure nodal loads is formed by the vectors X (r) defined by equation (2.5), and

furthermore it may be presented in the form
X(1)=A F(r) (2.7)

where A is the matrix formed by integrating equation (2.6) and passing from the local coordinate system to the
global one, while F(r) denotes the random process vector components of which to be the values of the vector
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field F(r,r) in the i-th element center of gravity components r=r;, . So, the random process vector F(r,1)

correlation matrix is given by the correlation tensor K . (p, t) according to equation (2.1).

Let us assume that the mean value of the external load field is equal to zero, m; = 0. Then in accordance with

equation (2.7) my =0 and its correlation matrix may be presented by
Ky(n,t,)=Ky (1)=<X(,)X(1;)>=A K, (p.7)AT (2.8)

The adopted expression allows a possibility to form the generalized nodal load X() correlation matrix with
respect to given distributed load field F(r,r) characteristics (these loads X(¢) are in the right hand side of general

equation (2.3)). The vector X(#) PSD is defined as Fourier transform of the correlation matrix Ky (1)

Sy (w)= jKX(r)e"mdr =A é J'KF(r) e dr|AT = A Sp(w)AT (2.9)

1
21
Expression (2.9) allows to determine the usual and mutual PSDs of the nodal load vector X(f) components
using the field F (r, ¢) time PSD.

The stochastical dynamics problem solution for the construction described by equation (2.3) is derived on the
basis of a nondamping structure mode shape series expansion

Y(t)=® q(r) (2.10)

where q(z) is the generalized coordinate vector, the components of which are random variables, while
P = [(I), ,(1)2,...,<I>n] is the mode shape matrix, the column @, of which is the k-th standardized mode shape

obtained from the eigenvalue problem solution
(K-wiM), =0 (2.11)
where @, is the k-th fundamental frequency.

Substituting equation (2.10) into equation (2.3) and multiplying it by @’ and taking into account the
aforementioned assumptions, one can obtain the separated ordinary differential simultaneous equations relative
to the generalized coordinates

g, (1) + [B]wi +[32qu(t) + 0, (1) = ((I)Z‘.X(z)jzxk(t) k=1,.,n (2.12)

where n denotes the number of the retained mode shapes.

To solve the statistical dynamics problem it is necessary for equation (2.12) to contain the external load X, (t)
correlation functions (or PSDs) using the process X(r) similar characteristics. Using the random functions

X, (¢) definition one can write the expressions for the vector X(r) correlation matrix and the PSD matrix

[<\k s (T) = zq)ktq)m[ KX,“\'/ (T)

i.fj=1

(2.13)

S\A i (0)) = 2 q)L:(Dn1/S.\" X ((1))

i.j=1
where the ®; are elements of the vector @, .
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Using the spectral decomposition representation method (Bolotin, 1979), one can write the expression for the

mutual PSD matrix elements g, (t) for a stationary case.
quqm (w)=H, (—iw) H, (i(o)SXkIm (o) (k,m=1,...,n) (2.14)
where H, (ico) denotes the frequency response matrix element. They are defined with respect to formulae

1

— 2¢, =By +B; (2.15)
Wy +2ig,W—-®

H,(io)=
With equation (2.15) the expression for S, , (o) is given by

S, o (o
L n () (2.16)

S o) = (wi —2ieku)—a)2) (w,zn —2iemm—(n2>

The correlation matrix may be defined with respect to the PSD obtained.

85 (w)e“"do

(2.17)

Kocam ()= (wi _2jgku)—m2) ((x),zn - 2i£mw—w2)

For civil engineering structures the situation is often such that the external loads field is broadband, the
damping is sufficiently small and the fundamental frequencies are dispersed. In this case the mutual correlation
between the generalized coordinates g, (t) may be neglected. The external loads X k(t) PSDs are assumed to
be constant in the limits of the admission band of the system described by equation (2.12). With these
assumptions

S, (@
S,, (@)= 'k(z 2 (2.18)
k 2 2 2,2
(w;—w“) +4e,0

il £
qu f)= Gf[k 5 5l [COSBkT +B—ksinﬁk"t|]

k

(2.19)
i n:S‘k (cok) - :
c- = B =40 —€;
q 2 k k k
k 2ek(nk

If aforementioned conditions are not fulfilled then the integral in equation (2.17) is computed numerically.
Equations (2.18) and (2.19) describe the probabilistic characteristics of the narrowband random process.

The FEM general relations are used to obtain the correlation functions and PSDs of the generalized nodal
displacements. So the nodal displacements Y(r) correlation matrix on the basis of equation (2.10) may be
presented by

K (1)=<Y()Y (1+1)>=<®q(t)g’ (1 + 1)@ >=d<q(r)q’ (1+1)>®" =K (1)@ (2.20)

The stress correlation matrix is obtained similarly. The PSDs are obtained as the correlation matrices from a

Fourier transform.
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3 The Stochastical Dynamics Problem Solution for Structures with Random Parameters

The stochastical dynamics problem solution for the structures with random parameters is executed on the basis
of the aforementioned approach using the sensitivity theory (Haug et al., 1988). The structure parameters in the
expressions for mass, damping and stiffness matrices are random variables and so are the fundamental
frequencies and mode shapes as well. For civil engineering structures the S; parameter dispersion is small,

therefore the structure fundamental frequencies depending on the S vector may be expanded into Taylor series
in the neighborhood of the mean value m, having linear terms only.

0, (S) = o, (m,) + ZL 5-_"1.\,) {F = fomitt) (3.1

The assumption that vector S is distributed in accordance with Gaussian Law or that m is great enough yields
the normalized PDF for ®,(S). The mean values Mg, and variances Gi,k are defined as

My, =0, (m,) cﬁ)k :Zawk o? ' (ke =21y 0sm) (8.2)

The mean value is defined by the eigenvalue problem solution (2.11) for the structure with deterministic
parameters S=m, . To compute the variances Gi,k the sensitivity theory is applied (Haug et al., 1988).

Therefore, to determine the derivatives d @, /d S; in the expression (3.2) equation (2.11) must differentiated

with respect to parameters S, , and the adopted expression muliiplied by the mode shape vector @, .

rlemafe |- [Fo.o)-u(Rea)-o

S

[

Taking account of the normalizing condition and reducing this equation respectively one can obtain the partial
derivative

Jw, _ |1 a_Kq)k,q% . ] a,_lyl_an‘cb,( b == ) T (3.3)
dg 20, | 9, 2 | dg

&~

The right hand side expression (3.3) is computed for S, =m; . The obtained matrices of mass and stiffness

derivatives are created making use of their additivity property.

The solution obtained in the previous chapter is used to solve the stochastical dynamics problem for the
structure with random parameters as the random variables. But the fundamental frequencies mk(k = l,.,.,n) are

assumed to be deterministic hence the PSD and correlation function defined from equations (2.18) and (2.19) to
be conditional ones and they are denoted by §, (w/w,) and K, (t/wy).

The generalized coordinates unconditional PSDs and correlation functions taking account of structure
parameters randomness are obtained as

K, (0 = [K, (510,) f(0,) do, (k=1...n) (3.4)
0
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and

S, (@) = jS[w(co/wA) flw,) do, (3.5)
0

In the case the PDF f(w, ) is Gaussian, equation (3.4) for the normalized correlation function and variance of

q, may be written

2 oy W, —mg
1 gyt €y . k
R (1) = —— ¢ COSMW, T +——SinW,; T [exp| — e dw,
— pr 2
T G(uk 0 k GUJ (3 6)
)
_ & . Gmk . &
=e exp| —— GOS8 M, T F sinmg,, T
2 ap
2
| S‘,k (mwk) z 9 ((Uk —mmk)
g, & ===t @l ~ a5 dw, 3.7)
2ep 421t Cuw, 5 Dk 2cmk €

The integral in equation (3.7) is computed numerically. The generalized coordinate PSD qu (w) is defined as

the correlation function inverse Fourier transform.

The generalized displacements probabilistic characteristics may be obtained on the adopted probabilistic
characteristics of the generalized coordinates q () vector using the method presented above.

4 Reliability Characteristics Definition Due to Fatigue Failures

As shown in chapter 2 for the chosen finite elements discretization of a structural element the generalized
nodal displacements (stress or strain) vector components v, (t). (i =1,...,m) in accordance with equation (2.10)

may be introduced as a linear combination of the structure generalized coordinates ¢, (1), (k =1,...,n).

vt =D by a, (1) (@.1)
k=1

For broadband random loads and small damping the generalized coordinates g, (¢) vector components are
considered to be the narrowband quasiharmonic random processes having the PSDs (2.18) and correlation
functions (2.19) and may be presented (Bolotin. 1979) by

ai (1) = A (1) sinfo, 1 + 0, (1)) (4.2)
where A, (r) and @, (r) are the slowly changing amplitude and phase respectively in comparison with
sin((okr). while @, is the k-th fundamental frequency. Substituting equation (4.2) into equation (4.1) gives

v (1) :ibl‘ A (1) sin[wkz+(pL(1)] :2);‘(1) (4.3)
k=1

In cquation (4.3) the narrowband processes v, (7) introduced are the i-th components of the stress (strain)

vector v ( ¢ ) corresponding to the k-th mode shape



Yae (1) =buqe(t) =by Aclr) Sin[“)kt+(pk([)] S

Various approximate approaches for the complex SSS and deterministic regular loads allow to reduce the
complex SSS to a simple one on the basis of the classic strength hypotheses and tests results under a state of
plane stress generalization. As a rule in this case the stress (strain) tensor components are assumed to change

synchronously and synphasely. The conditions mentioned are fulfilled for the narrowband processes Yy (t)
introduced in accordance with equation (4.4). These processes have the same fundamental frequencies @, (t)
and phases @, (t) In this case an equivalent narrowband process y,, (¢) with amplitude Ay (t) and frequency
®, may be introduced corresponding to the linear SSS in a given structure point and this process is considered

to be a square root from some components of the quadratic form y;, (t) .

Y (1) = [zczr i (8) Y (’)} (4.5)

where C, are the factors assigned from the corresponding strength hypothesis. For example, the stress

intensities are y,, (t) . Substituting equation (4.5) in expression (4.4) gives

12
Yek (t) = l:zcir by b qi(t)J =Cy gy (f)

112
Co=| D Cy by by (k=1,..,n)

(4.6)

On adopted components y,, () one can define some equivalent stress for a given structure point considering

all excited vibration mode shapes

n

1) =3 v ) =G =36 Acle) sinfoo,r + o, (1] @7

k=1 k=1

The broadband random process y, (t) is the narrowband random processes v, (t) superposition. Further on
basis of the random processes schematization method the process y, (t) reduces to the narrowband process

Y (t) as the equivalent one by a damage effect measure.
v (t) = A(r) sinfwr +9(z)] = A(r) cos(wx)+ D(r) sin(ox) (4.8)
The key factors of the processes y, () and y,, (r) equivalence are:

- coincidence of the envelope A(r) PDF in equation (4.8) and amplitude y, () PDF defined in accordance

with one of the random processes schematization methods (Kogaev, 1977);
- coincidence of the narrowband process v, (¢) frequency @ and the process y, (f) zero crossing or peaks

mean values;
- coincidence of the processes v, () and v, (r) correlation time.

The filter equation for the envelope A (r) is formed on the basis of the key factors mentioned. The envelope A

is obtained from

dhldt = @ (&) + @, (M) n(r) (4.9)
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where n (¢) is normal white noise with the correlation function K(t) = 05 Ny8(t) (8 -correlated process with

intensity Ny ); @, (A)., ®,(A) are known deterministic functions satisfied to the Lipschitz condition.

For various engineering structures the failures due to low and high cycle fatigue is a typical feature. These
phenomena are described in the phenomenological model limits by means of kinetic equations for the fatigue
damage measure which varies from zero to one. An equation may be presented for the quasiharmonic loads

process
dz(t)/dr = C() A (e)"™) (4.10)

where A(t) is the stress (strain) amplitude described by equation (4.8), while C(A) and m(A) are the factors

and slopes of stress-life curve which are step functions of A(r).

Considering jointly equations (4.9) and (4.10) one can state on the basis of the Doob theorem that [z (t), K(t)]
is a two-dimensional Markov process, the one-dimensional PDF f(z, A, t) of which satisfies to the Fokker-

Planck-Kolmogorov (FPK) equation (Tichonov, 1977)

T 2] - 2]+ L) @

with boundary conditions

limf(k.z,t) = 0 (A, 2) > 0,00 (4.12)
and initial condition

limf (A zt) = F(A)f(2) =0 (4.13)
The FPK equation coefficients are formed by the damage equation and filter equation coefficients

A (4] = @l(x)+ﬁ49—q>2 (W) d, (A)/ dh

A, (A) = c(a® (4.14)
B(%) = %wl(x)

where N, is the white noise intensity in filter equation (4.9).

To solve equation (3.11) the function 6(k. , r) is introduced as a characteristic function with respect to z and

the PDF with respect to A .
0(hw.1) = [ £ (hz1)eds (4.15)
0

Accordingly equation (4.15) from the FPK equation taking account of boundary conditions (4.12) has partial

derivatives for the 6(XA. ®. 1) function with only two independent variables r and A

-aafj- = —%[AI(X)G] + i, (M) + L2 [5(0p) (4.16)



In equation (4.16) the variable ® is a parameter. Considering 9(?», , t) as the PDF with respect to the
variable A >0 one can expand the series by the orthogonal polynomials Q,,(?») with the weight function

f(A) as the known PDF of A(r) (Lewin, 1989)
O(h 1) = f(M)D o,(w.1)Q,(A) (4.17)
n=0

Unknown complex factors «, (w, t) entered in equation (4.17) are defined by substituting (4.17) in equation
(4.16) taking account of the polynomials Q, (k) orthogonality condition. Further one can obtain the ordinary

simultaneous differential equations relative to the unknown factors o, (u),t) which are presented in the

complex form
oo, (w, ¢ .
L IACE (n=1...N) (4.18)

One can show that oco((n, t) is the characteristic function ofA z(t). The one-dimensional PDF of f (z, 1) is

defined to be the o, (w, ) inverse Fourier-transform. Hence the structure main reliability characteristics are

defined, for example, by the probability of survival

P(t) = [f(zr)dz (4.19)

5 Numerical Investigations

On the basis of the approaches developed to solve the stochastical dynamics problem of beam structures with
random parameters presented in chapters 2 and 3 the influence of most typical components of the structural
parameters vector S(¢) random dispersion on the probabilistic characteristics of the beam structure state vector
Y(¢) is investigated. At first one considers a solution of the model test for a ring cross-section beam rigidly
closed on the left end with point mass on the right end and an elastic support in the middle. The external load
is a point force to be a centered normal stationary process as ,,truncated white noise* (the PSD is constant in the
frequency range [0, 160] Hz). The random parameters - beam external diameter D, point mass value M, support
stiffness C-influence is investigated. Given parameters are assumed to be the normal random variables having
mean values and variances.

The material physical characteristics and beam parameters are:

- length 1 m;
- external diameter/internal diameter ratio 1.67

- modulus of elasticity (Young's modulus) E =1.96- 10° MPa
- Poisson’s ratio v=0.3

- material density p=78- 10° kg/m3

- white noise intensity S, =48118 N*m

This structure presented in Figure 1 consists of 10 finite elements. In given frequency range three vibration
mode shapes are excited in the external loads action plane (the ordinal numbers are 2-nd, 4-th, 6-th).
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Figure 1. Model Structure

Let us study the corresponding random parameter influence on the structure fundamental frequencies. The
mean values and root mean squares of the random parameters are respectively:

1) elastic support stiffness

m, =198 kN /m
2) point mass on the right end

o, =198kN/m

m.=98-10" kg oy =98-10" kg

3) 9-th finite element external diameter
my =10 6, =10"m
4) 9-th finite element internal diameter
m; =6-10" m o, =610"m
The given parameters distribution law is considered to be normal and they are assumed to be independent. In

accordance with equation (3.3) the fundamental frequency derivatives with respect to the mentioned varying
parameters have been defined in the point relating to the parameter mean values. The derivatives are given in

Table 1.

Fundamental
frequencies
denvatives

with

respect to the
varying
parameters

d,
35,

oW,
aS,

0w,
a5,

0w,
a5,

s
3s,

dwg
3s,

Support stiffness
¢

3.28788E-15

9.42326E-03

1.24149E-15

2.45411E-01

9.26052E-12

8.75077E-01

Point mass
m

-9.41352E+04

-2.76960E+05

-2.32904E+05

-5.26345E+05

-3.45316E+05

-2.38994E+03

External
diameter
D

-7.03035E+00

-1.01577E+01

2.29855E+01

1.51401E+02

1.31715E+02

-3.06113E+00

Internal
diameter
d

4.41961E+00

9.43927E+00

8.22859E+00

1.73419E+02

1.24345E+02

2.95116E+00

Table 1. Fundamental Frequency Derivatives

As one can see, the point mass on the right end affects the fundamental frequencies most significantly, the
support in the middle affects on the fundamental frequencies most weakly. This is connected with the fact that
the vibration mode node is in the middle of the structure (especially for the I-st, 3-rd, 5-th vibration modes)
and the greatest mode distance is at the structure s right end. That is why the parameter M influence on the 2-
nd, 4-th, 6-th vibration modes was studied in detail.
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The fundamental frequency variances have been computed (since only one parameter is being changed only one
term in equation (3.2) remains). Then the generalized coordinates correlation functions with respect to equation
(3.6) are defined. The expressions obtained are compared with the deterministic parameter correlation
functions. The normalized correlation functions for the 2-nd frequency are given in Figure 2 and the
corresponding PSDs are given in Figure 3. Here and further on the deterministic parameter curve is denoted by
number 1, the random parameter curve is denoted by number 2.
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Figure 3. The 2-nd Generalized Coordinate Normalized Power Spectral Density

For the 2-nd vibration mode when bending stress is dominant the stress variance values have been obtained

- 0'(21 =947-10° (MPa)z (deterministic mass case)

- 03 =971-10° (MPa)2 (random mass case)

It is necessary to notice the generalized coordinates variances non-sensitivity to any parameter dispersion. It
may be explained by the circumstance that the variance is a random process integral characteristic. The PSDs
and correlation functions differ most significantly.

The random vibration numerical investigations have been for a complex branching space tube structure of an
airplane control system element. The structure consists of 156 finite elements, the number of nodes is 153. The
nodes are enumerated to minimize the mass and stiffness matrices band width. The structure parameters are

- modulus of elasticity £ =7-10" MPa
- Poisson’s ratio v =0.3
- material density p =2.7-10° kg/m"

- external diameter/internal diameter ratio 1.13
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The tube structure is filled with a liquid having a density of p= 10° kg/m3, and fastened with six elastic
supports to a base structure. The experimental investigations for the supports show that only vertical axial
stiffness and angle torsional stiffness components are needed to be taken into account, and the remaining
stiffness components are assumed to be infinite. The axial and angle stiffnesses are random variables, the mean
values of which are m, =93345 kN/m and m,, =0273 kN/m.

The structure random vibrations are excited through the elastic supports. Six supports are assumed to be
random vibrated in accordance with a given law being stationary normal. As calculations show the external
load spectrum includes the structure’s six fundamental frequencies. This structure plot and 1-st and 2-nd
fundamental modes are shown in Figure 4.

153

145

57 139

38

Figure 4. Structure Plot and 1-st and 2-nd Fundamental Modes

Fundamental frequency sensitivity to the structure random parameters changing analysis shows that the
parameter N 7 C,-axial vertical stiffness in the 59-th node affects the fundamental frequencies most

significally (Table 2). Therefore, the most detailed calculations have been carried out for these random
parameters. The first generalized coordinates’ normalized correlation functions and PSDs are shown in Figure
5 and Figure 6 respectively. Root-Mean-Square ¢, =196 kN/m.
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Relations of the various frequency sensitivities, PSD values on these frequencies, displacement absolute values
lead to the largest variances of the stress intensities to appear at the 1-st fundamental frequency. The highest

frequencies have practically no effect on the stress variances.

| Fundamental frequency derivatives ow, 0w, 0w,
with respect to the parameters s N SST W E;k—
Axial stiffness into point 153 S 4.81530E-03 1.45530E-03 2.56983
Angle torsional stiffness into point 153 55 7.59090E-03 6.39397E-04 4.66385
Axial stiffness into point 145 54 1.34491E-03 1.38171E-03 5.68937
Angle torsional stiffness into point 145 Sy 7.73184E-03 3.06824E-03 2.37573
Axial stiffness into point 139 % 2.35170E-05 6.99471E-04 1.36709
Angle torsional stiffness into point 139 Se 1.11013E-03 5.30892E-03 9.89055
Axial stiffness into point 59 87 1.89074E-02 1.93690E-02 1.16597
Angle torsional stiffness into point 59 Sg 2.13541E-03 1.04967E-03 1.95248
Axial stiffness into point 38 Sy 7.13677E-04 4.60507E-04 1.01971
Angle torsional stiffness into point 38 S10 3.40855E-05 2.09092E-05 5.02191
Axial stiffness into point 3 S 2.83265E-04 1.81709E-04 6.69719
Angle torsional stiffness into point 3 S1a 4.36764E-05 2.62375E-05 6.75474

Table 2. Fundamental Frequency Derivatives
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Figure 5. The 1-st Generalized Coordinate Normalized Correlation Function
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Figure 6. The 1-st Generalized Coordinate Normalized Power Spectral Density

The reliability characteristics computing problem for the model test is solved with the following material

fatigue parameter data:

- endurance limit 6_, = 33 MPa;

- curve stress-life slopes are m, =8 (105 <N< 107cycles) and m, =2 (N < 105cycles).
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As the 2-nd mode shape stress exceeds stresses on remaining mode shapes significantly, only this mode shape
is taken into account to solve the reliability problem. The mean resource values (in cycles) have been obtained
for deterministic and stochastic problems respectively

~ T, = 18524
~ T, =18058

In Figure 7 the damage measure PDFs are presented for three various times. In Figure 8 probability of survival
and failures PDF plots are shown. The results obtained allow to make the following conclusions:

- if only generalized coordinates variances are needed for computing it makes no sense to take into account
structure parameter randomness; in the PSD and correlation function needed for computing structure
parameters not accounting for randomness gives distorted results

- mean resource decreasing (3 percent) for random mass case test is defined by difference between stress
variance values

- survival time and failure PDF depend on the PSD and correlation functions of the structure SSS parameter
forms.

The reliability characteristics computing problem for the aforementioned structure is solved with the same
material fatigue parameter data. In Figure 9 the damage measure PDFs are presented for three different times.
In Figure 10 probability of survival and failure PDF plots are shown.
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Figure 7. Damage Measure Probability Density Functions
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Figure 8. Probability of Survival (P) and Failure Probability Density Function (q)
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Figure 9. Damage Measure Probability Density Functions
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Figure 10. Probability of Survival (P) and Failures Probability Density Function (q)
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