НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК БЕЛАРУСИ ИНСТИТУТ ТЕПЛО- И МАССООБМЕНА им. А. В. ЛЫКОВА Журнал основан в январе 1958 г.

JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS

Отдельный оттиск Offprint

> Том 91, № 2 Vol. 91, No. 2

MAPT-АПРЕЛЬ MARCH-APRIL

2018

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ЖУРНАЛ

Основан в январе 1958 г.

2018. ТОМ 91, № 2 (МАРТ-АПРЕЛЬ)

СОДЕРЖАНИЕ

ОБЩИЕ ВОПРОСЫ ТЕОРИИ ПЕРЕНОСА

Чепак-Гизбрехт М. В., Князева А. Г. Влияние эффекта Соре на перераспределение легирующих	
элементов между покрытием и подложкой в условиях внешнего нагрева	283
Ковалев Ю. М., Куропатенко В. Ф. Определение температурной зависимости теплоемкости	207
для некоторых молекулярных кристаллов нитросоединении	297
ТЕПЛО- И МАССОПЕРЕНОС В ДИСПЕРСНЫХ И ПОРИСТЫХ СРЕДАХ	
Амелюшкин И. А., Стасенко А. Л. Взаимодействие потока газа, несущего несферические	
микрочастицы, с поперечным цилиндром	307
Шагапов В. Ш., Юмагулова Ю. А., Гиззатуллина А. А. Фильтрация высоковязкой нефти	210
в пласте при тепловом воздеиствии	319
хаоноуллин и. л., давлетоаев А. А., марьин д. Ф., хисамов А. А. моделирование восстановления температурного поля в нефтяном пласте	320
Бомба А Я Сафоник A П Математическое молелирование процесса аэробной очистки	329
сточных вод в условиях лиффузионного и массообменного возмушений	338
ГИДРОГАЗОДИНАМИКА В ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ	
Федоров А. В., Бедарев И. А., Лаврук С. А., Трушляков В. И., Куденцов В. Ю. Определение	
поля течения в топливном баке ракетного двигателя после выполнения миссии	345
Мошков П. А., Самохин В. Ф. Интегральная модель шума винтомоторной силовой установки	353
Абашев В. М., Еремкин И. Н., Животов Н. П., Замураев В. П., Калинина А. П.,	
Претьяков II. К., Тупикин А. В. Экспериментальное и численное моделирование процессов	261
изанов С. П. Кулранов А. Н. Ошонков В. В. Арролиционноское сопротивление шоророй	301
иванов С. д., кудряшов А. п., Ощенков Б. Б. Аэродинамическое сопротивление шаровои барабанной мельницы при транспорте полилисперсной угольной газоразеси	371
Паптев А Г. Башаров М М Математическая молель переноса и осажления тонколисперсных	
частии в турбулентном потоке эмульсий и суспензий	377
Гиниятуллин А. А., Тарасевич С. Э., Яковлев А. Б. Гилравлическое сопротивление труб	
со вставками в виде оребренных скрученных лент при течении воды	
Суров В. С. Численное моделирование взаимодействия воздушной ударной волны	
с приповерхностным газопылевым слоем	393
Белик В. Д. Модель импактной струи идеальной жидкости на основе точного решения	
плоской задачи	400
Salomatov V. V., Puzyrev E. M., and Salomatov A. V. Microwave Heating of a Liquid Stably Flowing	
in a Circular Channel under the Conditions of Nonstationary Radiative-Convective Heat Transfer	411
ПРОЦЕССЫ ПЕРЕНОСА В РЕОЛОГИЧЕСКИХ СРЕДАХ	
Шаповалов В. М. О применении модели Оствальда–де Виля для описания течения	
неньютоновской жидкости в зазоре встречно вращающихся валков	
ТЕПЛО- И МАССОПЕРЕНОС В ПРОЦЕССАХ ГОРЕНИЯ	
Волков Р. С., Жданова А. О., Кузнецов Г. В., Стрижак П. А. Подавление реакции термического	
разложения лесных горючих материалов на больших площадях горения	434
1 лушков д. О., Захаревич А. В., Стрижак П. А., Сыродой С. В. Экспериментальная оценка	112
массы зольного остатка при сжигании капель композиционного жидкого топлива	

ТЕПЛОПРОВОДНОСТЬ И ТЕПЛООБМЕН В ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ

Чернышов А. Д. Решение нелинейного уравнения теплопроводности для криволинейной	
области с условиями Дирихле методом быстрых разложений	456
Кот В. А. Интегральный метод граничных характеристик: условие Неймана	469
Половников В. Ю. Численное исследование тепловых режимов тепловых сетей подземной канальной	
прокладки в условиях затопления с использованием кондуктивно-конвективной модели теплопереноса	497
Лозовецкий В. В., Лебедев В. В., Черкина В. М., Иванчук М. С. Снижение тепловой нагрузки	
на окружающую среду с помощью тепловых насосов в системе очистки сточных вод	504
Сидоров Д. Э., Колосов А. Е., Казак И. А., Погорелый А. В. Инженерный анализ влияния	
составляющих тепловой нагрузки в процессе нагрева ПЭТ-преформ	513

НАНОСТРУКТУРЫ

Марончук И. И., Саникович Д. Д., Потапков П. В., Вельченко А. А. Усовершенствование	
процессов выращивания наногетероэпитаксиальных структур жидкофазной эпитаксией	518
Leena M. and Srinivasan S. Experimental Investigation of the Thermophysical Properties of TiO2/Pro	opylene
Glycol-Water Nanofluids for Heat Transfer Applications	
ТЕПЛОПЕРЕНОС ПРИ ФАЗОВЫХ ПРЕВРАЩЕНИЯХ	

Кислицын А. А., Шастунова У. Ю., Янбикова Ю. Ф. Экспериментальное исследование и	
математическая модель процесса протаивания мерзлого грунта под резервуаром с горячим	
теплоносителем	534
Заева М. А., Цирлин А. М., Сукин И. А. Влияние кинетики тепло- и массопереноса на множество	
реализуемых режимов процесса бинарной ректификации	542

ПРОЦЕССЫ ПЕРЕНОСА В НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ

Дубинов А. Е., Любимцева В. А. Наносекундные приповерхностные микроразряды	
в многослойных структурах	558

PA3HOE

Бакулин В. Н., Данилкин Е. В., Недбай А. Я. Динамическая устойчивость цилиндрической	
оболочки, подкрепленной цилиндром и продольными диафрагмами, при внешнем давлении	.564
Баранов М. И., Рудаков С. В. Электротермическое действие импульса тока короткого удара	
искусственной молнии на опытные образцы проводов и кабелей объектов электроэнергетики	.571
Скульский О. И., Славнов Е. В. Особенности экструзионной переработки	
сверхвысокомолекулярного полиэтилена. Эксперимент и теория	.584

ИНФОРМАЦИОННАЯ ЛИНИЯ

Положение о премиях имени академика А. В. Лыкова, присуждаемых Национальной академией	
наук Беларуси	

ЛЮДИ НАУКИ

Виктор Владимирович Ягов (к 80-л	етию со дня рождения)5	98
Валентин Фёдорович Куропатенко		01

ПОПРАВКА

Ответственный за выпуск: Л. Н. Шемет

Подписано в печать 07.03.2018. Формат 60×84¹/₈. Бумага офсетная. Усл. печ. л. 37,54. Уч.-изд. л. 32,99. Тираж 90 экз. Заказ 37.

Отпечатано в Республиканском унитарном предприятии «Издательский дом «Беларуская навука». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий №1/18 от 02.08.2013. ЛП № 02330/455 от 30.12.2013.

220141, г. Минск, ул. Ф. Скорины, 40

© Институт тепло- и массообмена им. А. В. Лыкова Национальной академии наук Беларуси

УДК 621.3.022:537.523.5:621.315.3

М. И. Баранов¹, С. В. Рудаков²

ЭЛЕКТРОТЕРМИЧЕСКОЕ ДЕЙСТВИЕ ИМПУЛЬСА ТОКА КОРОТКОГО УДАРА ИСКУССТВЕННОЙ МОЛНИИ НА ОПЫТНЫЕ ОБРАЗЦЫ ПРОВОДОВ И КАБЕЛЕЙ ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ

Приведены результаты исследований электротермического действия апериодических импульсов тока временной формы 10/350 мкс короткого удара искусственной молнии на опытные образцы электрических проводов и кабелей с медными и алюминиевыми жилами и оболочками с поливинилхлоридной и полиэтиленовой изоляцией силовых цепей объектов промышленной электроэнергетики. Показано, что термическая стойкость таких проводов и кабелей определяется интегралом действия указанного импульса тока. Найдены максимальные значения предельно допустимых и критических плотностей этого импульса в медных и алюминиевых токонесущих частях проводов и кабелей. Сильноточные эксперименты, выполненные в условиях высоковольтной лаборатории на уникальном генераторе импульсов тока искусственной молнии формы 10/350 мкс с нормированными по действующим требованиям международных и национальных стандартов амплитудно-временными параметрами и допусками на них, подтвердили достоверность предложенной расчетной оценки термической молниестойкости кабельно-проводниковой продукции.

Ключевые слова: импульсный ток, молния короткого удара, провода, кабели, объекты промышленной электроэнергетики, термическая молниестойкость.

Введение. В соответствии с данными ряда международных и национальных стандартов [1-6] короткий удар линейной молнии в электроэнергетические объекты (ЭЭО) вызывает протекание в их силовых электрических цепях апериодического импульса тока *i*(*t*) положительной полярности с амплитудой I, временная форма которого может быть представлена в виде $\tau_{\rm f}/\tau_{\rm p}=10/350$ мкс, где $\tau_{\rm f}$ — длительность фронта между уровнями (0.1–0.9) *I* и τ_p — длительность импульса тока на уровне 0.5 *I* (на полуспаде). В [1-6] приведены нормированные амплитудно-временные параметры (АВП) и допуски на них для указанного импульса тока молнии, соответствующие I-IV уровням молниезащиты инженерных коммуникаций и обслуживающего ЭЭО персонала. Так, для I уровня молниезащиты ЭЭО нормированные АВП импульса тока молнии временной формы 10/350 мкс характеризуются следующими численными показателями: амплитуда тока I = 200 кА при допуске ±10%, удельная энергия или интеграл действия тока $J = \int_{0}^{\infty} i^{2}(t)dt = 10 \cdot 10^{6}$ Дж/Ом при допуске ±35%, количество электрического заряда, протекше-го через жилу (оболочку) $q = \int_{0}^{\infty} i(t)dt = 100$ Кл при допуске ±20%. Для II уровня молниезащиты ЭЭО указанные АВП рассматриваемого импульса тока молнии составляют I = 150 кА при допуске $\pm 10\%$, $J = 5.6 \cdot 10^{6}$ Дж/Ом при допуске ±35% и q = 75 Кл при допуске ±20%. Для III и IV уровней молниезащиты ЭЭО соответствующие АВП импульса тока короткого удара молнии принимают значения I = 100 кА при допуске $\pm 10\%$, $J = 2.5 \cdot 10^6$ Дж/Ом при допуске $\pm 35\%$ и q = 50 Кл при допуске $\pm 20\%$. Отметим, что допуски на временные параметры т_f (носит второстепенный характер) и т_p импульса тока 10/350 мкс грозового атмосферного разряда составляют соответственно ±20% и ±10% [1-6]. В связи с этим при физическом моделировании рассматриваемого импульса тока искусственной молнии в условиях

¹Научно-исследовательский и проектно-конструкторский институт "Молния" Национального технического университета "Харьковский политехнический институт". Украина, 61013, г. Харьков, ул. Шевченко, 47; э-почта: baranovmi@kpi.kharkov.ua; ²Национальный университет гражданской защиты Украины. 61023, г. Харьков, ул. Чернышевского, 94. Поступила 19.10.2016.

высоковольтной лаборатории для его параметра τ_f допускается использование временного диапазона 10 мкс $\leq \tau_f \leq 15$ мкс. В [7, 8] приведены расчетные и экспериментальные данные по электротермическому действию импульсной А-компоненты и длительной С-компоненты тока искусственной молнии [9–11] на образцы листовой металлической обшивки и электрических проводов (кабелей) бортовых цепей летательных аппаратов. Согласно [1–11], АВП импульсной А-компоненты и длительной С-компоненты тока искусственной с-компоненты тока искусственной молнии существенно отличаются от АВП импульса тока формы 10/350 мкс, характерного для короткого удара молнии в наземные ЭЭО. В этой связи определение термической стойкости проводов и кабелей силовых цепей ЭЭО к импульсу тока 10/350 мкс молнии является актуальной прикладной задачей в области промышленной электроэнергетики.

Постановка задачи о термической стойкости проводов и кабелей ЭЭО к импульсу тока молнии временной формы 10/350 мкс. Рассмотрим широко используемые в силовых электрических цепях ЭЭО провода и кабели с медными (алюминиевыми) внутренними жилами и наружными оболочками с поливинилхлоридной (ПВХ) и полиэтиленовой (ПЭТ) изоляцией. Для электротермического исследования этих проводов и кабелей на молниестойкость используем их образцы длиной до 1 м. Принимаем, что по круглым сплошным или расщепленным медным (алюминиевым) жилам и оболочкам рассматриваемых проводов и кабелей электрических цепей ЭЭО протекают в продольном направлении импульсы тока молнии временной формы 10/350 мкс с указанными в [1-6] АВП и допусками на них. Образцы указанных проводов и кабелей исследовались при температуре окружающей среды $\theta_0 = 20^{\circ}$ C в предположении, что импульс тока молнии 10/350 мкс практически равномерно распределяется по поперечному сечению S_i жилы (i = 1) и оболочки (i = 2) провода (кабеля), поскольку глубина проникновения Δ_i азимутального магнитного поля, создаваемого импульсом аксиального тока 10/350 мкс имитированной молнии в токопроводящие немагнитные материалы рассматриваемых жил (оболочек) кабельно-проводниковой продукции (КПП), принимает численные значения, практически соизмеримые с их толщинами. Так, величина Δ_i , определяемая в квазистационарном приближении из расчетного соотношения $\Delta_i \approx 2 \left[t_{\text{max}} / (\pi \mu_0 \gamma_{0i}) \right]^{1/2}$ [12], где $t_{\text{max}} \approx 1.6\tau_{\text{f}}$ — время, соответствующее амплитуде *I* импульсного тока, $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м магнитная постоянная [13] и γ_{0i} — удельная электропроводность материалов токонесущих жил (оболочек) до протекания по ним тока молнии при температуре окружающей среды $\theta_0 = 20^{\circ}$ C, составляет при $t_{\rm max} \approx 24$ мкс ($\tau_{\rm f} \approx 15$ мкс) около 0.65 мм для меди ($\gamma_{0i} = 5.81 \cdot 10^7$ (Ом · м)⁻¹ [13]) и 0.82 мм для алюминия ($\gamma_{0i} = 3.61 \cdot 10^7 (\text{Ом} \cdot \text{м})^{-1} [13]$). Ввиду адиабатичности электротермических процессов, протекающих в материалах жил (оболочек) исследуемой КПП, при времени действия импульса тока молнии 10/350 мкс не более 1 мс пренебрегаем влиянием теплоотдачи с поверхностей токонесущих частей жил (оболочек) исследуемой КПП, имеющих текущую температуру $\theta_i \ge \theta_0$, а также теплопроводности электропроводящих материалов и изоляции этих частей на их джоулев нагрев. Считаем, что термическая стойкость проводов (кабелей) цепей ЭЭО при воздействии на них указанного импульса тока молнии лимитируется их предельно допустимой кратковременной температурой нагрева θ_{ishort} , зависящей от степени снижения механической прочности материала жилы (оболочки) и тепловых условий работы изоляции КПП в режиме ее кратковременного нагрева грозовым импульсом тока, протекающим по токонесущим частям проводов (кабелей). Принимаем, что θ_{ishort} соответствует известной предельно допустимой кратковременной температуре нагрева проводов и кабелей токами короткого замыкания промышленной частоты, длительность действия которых на КПП составляет порядка 100 мс [14]. Тогда в соответствии с [14] для проводов (кабелей) с медными и алюминиевыми жилами (оболочками) и ПВХ изоляцией θ_{ishort} ≈ 150°С, а для КПП с ПЭТ изоляцией θ_{ishort} ≈ 120°С. Для сравнения укажем, что при механических тяжениях в неизолированных (оголенных) проводах до 10 Н/мм² для медной жилы θ_{ishort} ≈ 300°C, а для алюминиевой жилы θ_{ishort} ≈ 200°C [14]. Требуется сформулировать условие термической молниестойкости указанной КПП, рассчитать предельно допустимые Siper и критические Sicr поперечные сечения жил (оболочек) рассматриваемых проводов (кабелей) ЭЭО и с их помощью найти максимальные значения предельно допустимых δ_{iper} и критических б_{icr} плотностей апериодического импульса тока 10/350 мкс искусственной молнии в исследуемой КПП. Кроме того, необходимо экспериментальным путем подтвердить достоверность расчетных оценок величин S_{iper} , S_{icr} , δ_{iper} и δ_{icr} для указанных проводов и кабелей ЭЭО, испытывающих воздействие импульса тока 10/350 мкс короткого удара искусственной молнии с АВП, нормированными по [1–6].

Расчетная оценка термической стойкости проводов и кабелей ЭЭО к импульсу тока молнии 10/350 мкс. Теплофизическое соотношение, определяющее условие термической молниестойкости исследуемых проводов и кабелей ЭЭО, имеет вид [8]

$$\theta_i \leq \theta_{i \text{short}}$$
(1)

Из (1) видно, что для оценки термической стойкости рассматриваемой КПП к действию на нее импульса тока короткого удара молнии необходимо знать температуру θ_i ее нагрева этим током. Расчетное выражение для текущей температуры θ_i джоулева нагрева материалов токонесущих жил (оболочек) проводов (кабелей) цепей ЭЭО, обусловленного протеканием по ним апериодического импульса тока 10/350 мкс с заданными АВП, можно представить в следующем виде [8]:

$$\theta_i \approx \theta_{i0} + (c_{0i}\beta_{0i})^{-1} \left\{ \exp\left[J_L\beta_{0i}/(\gamma_{0i}S_i^2)\right] - 1 \right\},$$
(2)

где β_{0i} — тепловой коэффициент удельной электропроводности и c_{0i} — удельная объемная теплоемкость этих материалов при температуре θ_{i0} , принимающей значения температуры окружающей среды $\theta_0 = 20^{\circ}$ С или длительно допустимой температуры их нагрева θ_{ilong} в номинальном режиме работы электрических цепей ЭЭО до воздействия на них импульса тока молнии [15]. Из (2) следует, что при известных исходных данных: c_{0i} , β_{0i} , γ_{0i} , θ_{i0} и S_i , нахождение температуры нагрева жил (оболочек) проводов и кабелей ЭЭО θ_i сводится к расчетной оценке интеграла действия J апериодического импульса тока молнии 10/350 мкс. Для нахождения этого интеграла представим протекающий по жиле (оболочке) провода (кабеля) апериодический импульс тока i(t) молнии в следующем виде [16]:

$$i(t) = kI(\exp(-\alpha_1 t) - \exp(-\alpha_2 t)),$$
 (3)

где $\alpha_1 \approx 0.76/\tau_p$, $\alpha_2 \approx 2.37/\tau_f$, $k = \left[(\alpha_1/\alpha_2)^m - (\alpha_1/\alpha_2)^n \right]^{-1}$ — нормирующий коэффициент для используемого в исследованиях апериодического импульса тока молнии, $m = \alpha_1/(\alpha_2 - \alpha_1)$ и $n = \alpha_2/(\alpha_2 - \alpha_1)$. Используя (3), для интеграла действия *J* импульса тока молнии *i*(*t*) временной формы $\tau_f/\tau_p = 10/350$ мкс получим в принятом приближении расчетное соотношение

$$J = \int_{0}^{\infty} i^{2}(t)dt \approx k^{2}I^{2} \left(0.658\tau_{\rm p} - 0.633\tau_{\rm f} \right).$$
(4)

В случаях, нормируемых по [1–6], из (4) при $\tau_f / \tau_p = 10/350$ мкс ($k \approx 1.054$), I = 100 кА (III и IV уровни молниезащиты) и I = 200 кА (I уровень молниезащиты), следует, что интеграл действия J для принятого импульса тока молнии i(t) принимает численные значения $2.49 \cdot 10^6$ и $9.96 \cdot 10^6$ Дж/Ом соответственно. Эти оценочные значения интеграла действия J рассматриваемого импульса тока молнии не более чем на 1% отличаются от численных значений J, нормируемых в [1–6] ($2.5 \cdot 10^6$ и $10 \cdot 10^6$ Дж/Ом соответственно). Поэтому соотношение (4) может использоваться в области молниезащиты ЭЭО для расчетных оценок интеграла действия J апериодического импульса тока молнии временной формы 10/350 мкс, воздействующего на провода и кабели их силовых цепей.

С учетом (3) для электрического заряда q, протекающего через поражаемые коротким ударом молнии провода и кабели цепей ЭЭО при $\tau_f/\tau_p = 10/350$ мкс, находим

$$q = \int_{0}^{\infty} i(t)dt \approx kI \left(1.315\tau_{\rm p} - 0.422\tau_{\rm f} \right).$$
(5)

Расчетная оценка величины заряда q, полученная с использованием аналитического соотношения (5), показывает, что при заданной временной форме импульса $\tau_f / \tau_p = 10/350$ мкс тока молнии i(t) с нормирующим коэффициентом $k \approx 1.054$, найденным для него из (3), и амплитудах импульсного тока I = 100 кА и I = 200 кА, нормированных согласно техническим требованиям [1–6], эта величина заряда принимает численные значения 48.1 и 96.2 Кл соответственно. Оценочные значения заряда q, полученные с использованием (5) для указанных выше двух случаев короткого удара молнии, лишь на 4% отличаются от соответствующих величин электрического заряда 50 и 100 Кл, требуемых нормами [1–6]. Приведенные данные показывают, что приближенное соотношение (5) может быть использовано в области молниезащиты ЭЭО для расчетных оценок величины электрического заряда q, протекающего через КПП при прямом воздействии на нее короткого удара линейной молнии.

Для предельно допустимых поперечных сечений S_{iper} токонесущих жил (оболочек) рассматриваемых проводов и кабелей электрических цепей ЭЭО, с учетом условия (1) их термической стойкости к действию импульса тока молнии 10/350 мкс, имеем

$$S_{iper} \approx J^{1/2} / C_{iper} k I C_{iper}^{-1} \left(0.658 \tau_{\rm p} - 0.633 \tau_{\rm f} \right)^{1/2}$$
 (6)

Здесь $C_{iper} \approx (J_{ishort} - J_{ilong})^{1/2}$, где J_{ishort} и J_{ilong} — интегралы импульсного тока для токонесущих жил (оболочек) проводов (кабелей), предельные кратковременные и длительно допустимые температуры нагрева материала которых соответствуют величинам θ_{ishort} и θ_{ilong} [14, 15]. Отметим, что для проводов (кабелей) силовых цепей ЭЭО с ПВХ и ПЭТ изоляцией в номинальном режиме их работы величина θ_{ilong} составляет 65°С, а для неизолированных (оголенных) проводов — 70°С [14]. В режиме обесточивания проводов (кабелей) их текущая температура в принятом приближении составляет $\theta_i = \theta_0$ ($J_{ilong} = 0$), а в номинальном режиме их токовой загрузки $\theta_i = \theta_{ilong}$ ($J_{ilong} \neq 0$). С учетом [15] для искомых интегралов импульса тока молнии 10/350 мкс J_{ishort} и J_{ilong} , входящих в (6), запишем следующие расчетные соотношения:

$$J_{i\text{short}} \approx \gamma_{0i} \beta_{0i}^{-1} \ln \left[c_{0i} \beta_{0i} (\theta_{i\text{short}} - \theta_0) + 1 \right], \tag{7}$$

$$J_{i\text{long}} \approx \gamma_{0i}\beta_{0i}^{-1} \ln \left[c_{0i}\beta_{0i}(\theta_{i\text{long}} - \theta_0) + 1 \right].$$
(8)

Для критических поперечных сечений S_{icr} токонесущих жил (оболочек) исследуемых проводов и кабелей цепей ЭЭО при действии на них импульса тока молнии 10/350 мкс с учетом приведенного в [15] условия электрического взрыва их металлических частей получаем

$$S_{icr} \approx J^{1/2} / D_{icr} \approx k I D_{icr}^{-1} \left[0.658 \tau_{\rm p} - 0.633 \tau_{\rm f} \right]^{1/2} ,$$
 (9)

где $D_{icr} = (J_{icr} - J_{ilong})^{1/2}$. Учитывая принятые допущения, для максимальных значений предельно допустимых плотностей δ_{iper} импульса тока 10/350 мкс искусственной молнии в токонесущих жилах (оболочках) рассматриваемых проводов (кабелей) силовых цепей ЭЭО из (4) и (6) находим

$$\delta_{iper} \approx I/S_{iper} \approx k^{-1}C_{iper} \left(0.658\tau_{\rm p} - 0.633\tau_{\rm f}\right)^{-1/2}$$
 (10)

Для максимальных значений критических плотностей δ_{icr} импульса тока 10/350 мкс искусственной молнии в токонесущих жилах (оболочках) этих проводов и кабелей из (4) и (9) в получаем

$$\delta_{icr} \approx I/S_{icr} \approx k^{-1}D_{icr} \left(0.658\tau_{\rm p} - 0.633\tau_{\rm f}\right)^{-1/2}$$
 (11)

Из (6) и (9) следует, что предельно допустимые и критические поперечные сечения проводов (кабелей) ЭЭО, на которые может воздействовать импульс тока грозового атмосферного разряда, зависят от АВП тока I, τ_p , τ_f и k и от интегралов тока J_{ishort} , J_{ilong} и J_{icr} . При этом определяющим параметром является амплитуда I импульса тока $\tau_f/\tau_p = 10/350$ мкс искусственной молнии. Что касается максимальных

Материал	$\gamma_{0i} \cdot 10^7, (Om \cdot m)^{-1}$	<i>с</i> _{0<i>i</i>} · 10 ⁶ , Дж/(м ³ · ^o C)	β _{0<i>i</i>} · 10 ^{−9} , м ³ /Дж	$J_{\rm icr} \cdot 10^{17}$, Дж/(Ом · м ⁴)
Медь	5.81	3.92	1.31	1.95
Алюминий	3.61	2.70	2.14	1.09

Таблица 1. Основные тепло- и электрофизические характеристики материала жил (оболочек) проводов и кабелей ЭЭО при θ_{i0} = θ₀ = 20°C [8, 14–16]

Таблица 2. Численные значения электрофизических параметров C_{iper} и D_{icr} для проводов и кабелей ЭЭО, испытывающих воздействие импульсов тока молнии при $\theta_{i0} = \theta_0 = 20^{\circ}$ С и $\theta_{i0} = \theta_{ilong} = 65^{\circ}$ С

Вид изоляции в проводе (кабеле)	Материал жилы (оболочки) провода (кабеля)	$C_{i m per}$ и $D_{i m cr}$, 10^8 Дж $^{1/2} \cdot m Om^{-1/2} \cdot m^{-2}$					
		Ci	per	D _{icr}			
		20°C	65°C	20°C	65°C		
ПВХ	Медь	1.506	1.162	4.416	4.310		
	Алюминий	0.974	0.748	3.302	3.242		
ПЭТ	Медь	1.352	0.954	4.416	4.310		
	Алюминий	0.877	0.616	3.302	3.242		

Таблица 3. Численные значения расчетных максимальных предельно допустимых и критических плотностей импульса тока молнии 10/350 мкс в токонесущих жилах (оболочках) проводов и кабелей ЭЭО при θ_{i0} = θ₀ = 20°C и θ_{i0} = θ_{ilong} = 65°C

Вид изоляции в проводе (кабеле)	Материал жилы (оболочки) провода	δ_{iper} и δ_{icr} , кА/мм ²				
		δ _i	per	δ	icr	
	(кабеля)	20°C	65°C	20°C	65°C	
ΠΡΥ	Медь	9.548	7.367	27.99	27.32	
IIDA	Алюминий	6.175	4.742	20.93	20.55	
тсп	Медь	8.571	6.048	27.99	27.32	
1131	Алюминий	5.560	3.905	20.93	20.55	

значений предельно допустимых и критических плотностей импульсного тока в токонесущих частях проводов и кабелей ЭЭО, то, согласно (10) и (11), их значения не зависят от токовой амплитуды I и определяются лишь временными параметрами импульсного тока молнии и параметрами C_{iper} и D_{icr} . Численные значения последних, полученные с использованием (6)–(9) для исследуемой КПП в принятых случаях при $\theta_{i0} = \theta_0 = 20^{\circ}$ С, $\theta_{i0} = \theta_{ilong} = 65^{\circ}$ С и $\theta_{ishort} = 150^{\circ}$ С для ПВХ изоляции и $\theta_{ishort} = 120^{\circ}$ С для ПЭТ изоляции с учетом количественных данных для постоянных величин c_{0i} , β_{0i} , γ_{0i} и J_{icr} , представленных в табл. 1 [8,14–16], сведены в табл. 2. В табл. 3 приведены максимальные численные значения предельно допустимых и критических плотностей заданного апериодического импульса тока $\tau_f/\tau_p = 10/350$ мкс ($k \approx 1.054$) искусственной молнии при $\theta_{i0} = \theta_0 = 20^{\circ}$ С и $\theta_{i0} = \theta_{ilong} = 65^{\circ}$ С, найденные по формулам (10) и (11). В табл. 4 представлены результаты расчетной оценки по (6) и (9) численных значений предельно допустимых S_{iper} и критических S_{icr} поперечных сечений токонесущих жил (оболочек) проводов (кабелей) ЭЭО с учетом данных табл. 2 в случае $\theta_{i0} = \theta_{ilong} = 65^{\circ}$ С, являющемся для силовых цепей ЭЭО наиболее тяжелым вариантом их поражения молнией с позиции термической молниестойкости КПП, для трех нормированных значений амплитуды I импульса тока молнии временной формы 10/350 мкс, соответствующих I–IV уровням молниезащиты ЭЭО [1–6].

Таблица 4. Численные значения предельно допустимых и критических сечений токонесущих жил (оболочек) проводов и кабелей ЭЭО для импульса тока молнии 10/350 мкс с амплитудой I, нормированной по [1–6] при $\theta_{i0} = \theta_{ilong} = 65^{\circ}$ С

D	Материал жилы	$S_{i m per}$ и $S_{i m cr}$, мм ²						
Вид изоляции в проводе (кабеле)	(оболочки) провода (кабеля)	S_{iper}			S _{icr}			
		200 кА	150 кА	100 кА	200 кА	150 кА	100 кА	
ПВХ	Медь	27.15	20.36	13.58	7.32	5.49	3.66	
	Алюминий	42.17	31.63	21.09	9.73	7.29	4.86	
ПЭТ	Медь	33.07	24.80	16.54	7.32	5.49	3.66	
	Алюминий	51.21	38.41	25.61	9.73	7.29	4.86	

Расчетная оценка текущей температуры нагрева θ_i , например, токонесущей медной жилы (i = 1) провода с ПВХ изоляцией с поперечным сечением $S_1 = S_{1per} = 13.58 \text{ мм}^2$, импульсом тока $\tau_f / \tau_p = 10/350$ мкс искусственной молнии с нормированной по [1-6] амплитудой I = 100 кА (табл. 4) по формуле (2) показывает, что в рассматриваемом случае ($\theta_{10} = \theta_{1long} = 65^{\circ}$ С, $J = 2.5 \cdot 10^6$ Дж/Ом) величина θ_1 не превышает 135° С. Видно, что найденное приближенное расчетное значение текущей температуры нагрева $\theta_1 \approx 135^{\circ}$ С указанного изолированного провода меньше его предельно допустимой кратковременной температуры нагрева $\theta_{1short} \approx 150^{\circ}$ С [14]. А раз так, то данный провод с ПВХ изоляцией будет удовлетворять предложенному критерию термической молниестойкости КПП (1) применительно к III–IV уровням молниезащиты ЭЭО.

Экспериментальная оценка термической стойкости некоторых проводов и кабелей ЭЭО к импульсу тока молнии 10/350 мкс. Выполнена серия сильноточных электротермических экспериментов в условиях высоковольтной лаборатории ($\theta_{i0} = \theta_0 = 20^{\circ}$ С) для проверки работоспособности теплофизического подхода к оценке термической молниестойкости КПП силовых цепей ЭЭО по (1) и (2), возможности выбора предельно допустимых и критических поперечных сечений медных и алюминиевых сплошных (расщепленных) жил проводов и кабелей с ПВХ и ПЭТ изоляцией по (6) и (9) и определения для этих проводов (кабелей) максимальных значений предельно допустимых и критических плотностей импульса тока молнии 10/350 мкс с АВП и допусками на них, предусмотренными нормами [1–6], по (10) и (11). Эксперименты выполнялись с помощью мощного высоковольтного генератора типа ГИТМ-10/350 номинальной энергоемкостью 1145 кДж с параллельно работающими 459 импульсными конденсаторами с зарядным напряжением до ±50 кВ (разработка НИПКИ "Молния" НТУ "Харьковский политехнический институт" с участием авторов [17]), формирующего импульсы тока короткого удара грозового воздушного разряда положительной (отрицательной) полярности с нормированными АВП [1–6] на общей низкоомной (с активным сопротивлением до 0.1 Ом) и малоиндуктивной (с индуктивностью до 1.5 мкГн) электрических нагрузках (испытываемых элементах и устройствах ЭЭО).

На рис. 1 приведена осциллограмма апериодического импульса тока 15/335 мкс искусственной молнии положительной полярности, протекающего в сильноточной разрядной цепи высоковольтного генератора ГИТМ-10/350 [17] через сплошную круглую медную жилу сечением $S_1 \approx 9.6 \text{ мm}^2$ ($I \approx 85.6 \text{ кA}, \delta_{1\text{max}} \approx I/S_1 \approx 8.916 \text{ кA/мm}^2$) крупногабаритного радиочастотного коаксиального кабеля марки РК Д2-3.5/9 с полувоздушной ПЭТ изоляцией длиной 0.5 м [18] и со снятой наружной витой медной оболочкой-оплеткой. Укажем, что для всех экспериментов, выполненных на данном уникальном генераторе импульсов тока 10/350 мкс искусственной молнии, зарядные напряжения U_{ch} положительной полярности его отдельных параллельно и синхронно работающих мощных конденсаторных батарей оставлись неизменными и равными $U_{ch,1-3} \approx 16.5 \text{ kB}$ для трех батарей, формирующих фронтальную и среднюю части импульса тока 10/350 мкс и $U_{ch,4} \approx 4.2 \text{ кB}$ для четвертой батареи, формирующей спадающую часть ("хвост") импульса тока 10/350 мкс. Измерение АВП апериодических импульсов тока искусственной

молнии, формируемых в сильноточной разрядной цепи указанного генератора и воздействующих на опытные образцы проводов (кабелей) силовых цепей ЭЭО, проводилось с помощью измерительного коаксиального шунта типа ШК-300 с собственным активным сопротивлением 0.185 мОм [11], имеющего коэффициент преобразования $K_c \approx 11.26 \cdot 10^3$ A/B, и цифрового запоминающего осциллографа типа Tektronix TDS 1012. Из данных, приведенных на рис. 1, видно, что исходный апериодический импульс тока искусственной молнии, моделируемый с помощью генератора типа ГИТМ-10/350 [17], удовлетворяет требованиям [1-6] для АВП импульсного тока короткого удара молнии применительно к III-IV уровням молниезащиты ЭЭО. Путем визуального обследования испытанного на молниестойкость кабеля марки РК Д2-3.5/9 было установлено, что данный образец КПП выдержал без видимых повреждений электротермическое воздействие указанного импульса тока молнии 15/335 мкс. На это указывает и оценка текущей температуры нагрева θ_1 его круглой сплошной медной жилы, выполненная для данного случая $(S_1 \approx 9.6 \text{ мм}^2, I \approx 85.6 \text{ кA}, J \approx 1.8 \cdot 10^6 \text{ Дж/Ом})$ по (2) с использованием исходных тепло- и электрофизических данных из табл. 1 при $\theta_{10} = \theta_0 = 20^{\circ}$ C. Она показала, что θ_1 не превышает 128°C. Это значение температуры θ₁ почти полностью совпадает с известной предельно допустимой кратковременной температурой нагрева θ_{lshort} ≈ 120°C кабелей с ПЭТ изоляцией [8, 14], что подтверждает достоверность формулы (2). С учетом данных табл. 2 для параметра $C_{1\text{per}}$ ($\theta_{10} = \theta_0 = 20^{\circ}\text{C}$) из (6) следует, что при указанных АВП имитированного тока молнии предельно допустимое сечение медной жилы испытываемого кабеля марки РК Д2-3.5/9 составляет $S_{1\text{per}} \approx 9.49 \text{ мм}^2$ (примерно на 1% меньше реального сечения S_1 медной жилы этого кабеля). В рассматриваемом случае выполняется неравенство $S_1 > S_{1per}$, что и обуславливает молниестойкость данного кабеля. Что касается численных оценочных значений плотности тока $\delta_{1 \text{ max}} \approx 8.916 \text{ кA/мм}^2$ искусственной молнии в медной жиле сечением $S_1 \approx 9.6 \text{ мм}^2$ кабеля марки РК Д2-3.5/9 и рассчитанной по (10) максимальной предельно допустимой для нее плотности импульса тока $\delta_{1\text{per}}$ временной формы 15/335 мкс, составляющей около 8.627 кА/мм² при $\theta_{10} = \theta_0 = 20^{\circ}$ С, то они, как видно, отличаются примерно на 3%. Эти данные указывают на работоспособность расчетных соотношений (4), (6)–(8) и (10). Следует отметить, что в рассматриваемом случае различие между максимальными численными значениями предельно допустимых плотностей импульсов тока $\delta_{1 per}$ в медной жиле кабеля марки РК Д2-3.5/9 для импульсов 10/350 мкс (δ_{1per} ≈ 8.571 кА/мм²) и 15/335 мкс (δ_{1per} ≈ 8.627 кА/мм²), рассчитанными по (10), составляет не более 1%.

На рис. 2 показан общий вид рабочего стола генератора типа ГИТМ-10/350 [17] с расщепленной круглой медной жилой сечением $S_1 = 3.2 \text{ мм}^2$ среднегабаритного радиочастотного коаксиального кабеля марки РК 50-7-11 со сплошной ПЭТ изоляцией [18] длиной 0.5 м, закрепленной на двух стальных электродах в "разрыв" его сильноточной разрядной цепи. На рис. 3 представлена осциллограмма апериодического импульса тока 17/310 мкс ($I \approx 82.9 \text{ кA}$, $\delta_{1\text{max}} \approx I/S_1 \approx 25.9 \text{ кA/мм}^2$, $k \approx 1.094$) искусственной молнии, протекающего через указанную медную жилу при ее электрическом взрыве. Фотоизображение начальной

Рис. 1. Осциллограмма апериодического импульса тока 15/335 мкс искусственной молнии в сильноточной разрядной цепи высоковольтного генератора ГИТМ-10/350 [17] при разряде его мощных емкостных накопителей энергии на сплошную круглую медную жилу сечением $S_1 \approx 9.6 \text{ мм}^2$ радиочастотного коаксиального кабеля марки РК Д2-3.5/9 с полувоздушной ПЭТ изоляцией и снятыми наружными защитной ПЭТ оболочкой и витой медной оболочкой-оплеткой при $I \approx 85.6 \text{ кA}$, $\delta_{1\text{max}} \approx I/S_1 \approx 8.9 \text{ кA/мм}^2$, $\tau_f \approx 15 \text{ мкс}$, $t_{\text{max}} \approx 24 \text{ мкс}$, $\tau_p \approx 335 \text{ мкс}$, $k \approx 1.079$, $J \approx 1.8 \cdot 10^6 \text{ Дж/Ом}$ и $q \approx 41 \text{ Кл}$. Масштаб для тока и времени — 22.52 кA/дел и 50 мкс/дел соответственно

Рис. 2. Внешний вид рабочего стола высоковольтного генератора ГИТМ-10/350 [17] с закрепленной на его стальных электродах расщепленной круглой медной жилой сечением $S_1 \approx 3.2 \text{ мм}^2$ радиочастотного коаксиального кабеля марки РК 50-7-11 со сплошной ПЭТ изоляцией и "заглушенной" наружной витой медной оболочкой-оплеткой до воздействия на нее апериодического импульса тока $\tau_f/\tau_p = 17/310$ мкс искусственной молнии амплитудой $I \approx 82.9 \text{ кA}$

Рис. 3. Осциллограмма апериодического импульса тока 17/310 мкс искусственной молнии в сильноточной разрядной цепи высоковольтного генератора ГИТМ-10/350 [17] при электрическом взрыве расщепленной круглой медной жилы сечением $S_1 \approx 3.2 \text{ мм}^2$ радиочастотного коаксиального кабеля марки РК 50-7-11 со сплошной ПЭТ изоляцией и "заглушенной" наружной витой медной оболочкой-оплеткой при $I \approx 82.9 \text{ кA}$, $\delta_{1\text{max}} \approx I/S_1 \approx 25.9 \text{ кA/мм}^2$, $\tau_f \approx 17 \text{ мкс}$, $t_{\text{max}} \approx 27 \text{ мкс}$, $\tau_p \approx 310 \text{ мкс}$, $k \approx 1.094$, $J \approx 1.59 \cdot 10^6 \text{ Дж/Ом и } q \approx 36.3 \text{ Кл. Масштаб для тока и времени — 22.52 кА/дел и 50 мкс/дел соответственно$

стадии электрического взрыва медной жилы данного кабеля представлено на рис. 4. На рис. 5 показан общий вид концевой разделки кабеля марки РК 50-7-11 со сплошной ПЭТ изоляцией и "заглушенной" наружной витой медной оболочкой-оплеткой после электрического взрыва его медной жилы. Из данных рис. 1 и 3 можно заключить, что из-за электрического взрыва медной жилы кабеля марки РК 50-7-11 происходит определенное искажение временной формы действующего на него импульса тока, приводящее к незначительному увеличению его временных параметров на фронте и их более заметному укорочению на спаде импульса. В соответствии с (9) и данными табл. 2 для параметра D_{iper} при $\theta_{10} = \theta_0 = 20^{\circ}$ С критическое сечение медной жилы кабеля марки РК 50-7-11, подвергшегося воздействию апериодического импульса тока 17/310 мкс ($J \approx 1.59 \cdot 10^6$ Дж/Ом), составляет около $S_{1cr} \approx 2.86$ мм². Данная величина сечения $S_{1 cr}$ отличается от сечения электрически взрывающейся медной жилы реального кабеля ($S_1 = 3.2 \text{ мм}^2$) примерно на 10%. Максимальное значение критической плотности импульса тока 17/310 мкс для медной жилы кабеля марки РК 50-7-11, рассчитанное по (11), составляет около $\delta_{1cr} \approx 29$ кА/мм². Кстати, это численное значение критической плотности тока δ_{1cr} отличается в пределах 3% от соответствующей плотности импульса тока 10/350 мкс в медных токонесущих частях КПП с ПЭТ изоляцией (δ_{1cr} ≈ 28 кА/мм²) при $\theta_{10} = \theta_0 = 20^{\circ}$ C (табл. 3). Расхождение между приведенным расчетным численным значением δ_{1cr} ≈ 29 кА/мм² и экспериментальной оценкой плотности импульса тока 17/310 мкс искусственной молнии δ_{1max} ≈ 25.9 кА/мм² при электрическом взрыве расщепленной медной жилы кабеля марки РК 50-7-11, происходящем за счет термического удара с быстрым выделением в ее электропроводящей структуре значительного количества тепловой энергии, также не превышает 10%. Эти результаты указывают на достоверность расчетных соотношений (4), (9) и (11). Результаты видеосъемки процесса электрического взрыва медной жилы кабеля марки РК 50-7-11 (рис. 5) и визуального обследования испытуемого

Рис. 4. Начальная стадия электрического взрыва расщепленной круглой медной жилы сечением $S_1 \approx 3.2 \text{ мм}^2$ радиочастотного коаксиального кабеля марки РК 50-7-11 со сплошной ПЭТ изоляцией и "заглушенной" наружной витой медной оболочкой-оплеткой в сильноточной разрядной цепи мощного высоковольтного генератора ГИТМ-10/350 [17], воспроизводящего протекающий по ней апериодический импульс тока $\tau_f / \tau_p = 17/310$ мкс искусственной молнии при $I \approx 82.9$ кА, $\delta_{1\text{max}} \approx I/S_1 \approx 25.9$ кА/мм², $\tau_f \approx 17$ мкс, $\tau_p \approx 310$ мкс, $k \approx 1.094$, $J \approx 1.59 \cdot 10^6$ Дж/Ом и $q \approx 36.3$ Кл

Рис. 5. Внешний вид зоны концевой разделки радиочастотного коаксиального кабеля марки РК 50-7-11 со сплошной ПЭТ изоляцией и "заглушенной" наружной витой медной оболочкой-оплеткой после протекания по подвергшейся электрическому взрыву расщепленной круглой медной жиле сечением $S_1 \approx 3.2 \text{ мм}^2$ апериодического импульса тока 17/310 мкс искусственной молнии в сильноточной разрядной цепи мощного высоковольтного генератора ГИТМ-10/350 при $I \approx 82.9 \text{ кA}$, $\delta_{1\text{max}} \approx I/S_1 \approx 25.9 \text{ кA/мм}^2$, $\tau_f \approx 17 \text{ мкс}$, $\tau_p \approx 310 \text{ мкс}$, $k \approx 1.094$, $J \approx 1.59 \cdot 10^6 \text{ Дж/Ом и } q \approx 36.3 \text{ Кл}$

образца КПП после проведения эксперимента указывают на полную сублимацию его медной жилы и удаление паров меди из внутреннего цилиндрического объема поясной ПЭТ изоляции кабеля в виде магнитогидродинамических реактивных струй через образовавшиеся в ней торцевые круглые вакансии-отверстия. Испарение жилы с выходом наружу паров меди в зоне концевой разделки данного кабеля приводит к частичной металлизации в ней наружной поверхности уцелевшей поясной ПЭТ изоляции кабеля.

На рис. 6 показан фрагмент опытного образца провода марки ПНП 2 × 2.5 с ПВХ изоляцией [18] длиной 0.5 м после протекания по его двум круглым сплошным медным жилам общим сечением $S_1 = 5 \text{ мm}^2$, параллельно включенным в сильноточную разрядную цепь высоковольтного генератора, импульса тока 17/335 мкс короткого удара грозового разряда ($k \approx 1.088$) искусственной молнии амплитудой $I \approx 83.8 \text{ кA}$ ($\delta_{1\text{max}} \approx I/S_1 \approx 16.8 \text{ кA/мм}^2$, $J \approx 1.74 \cdot 10^6 \text{ Дж/Ом}$). Видно, что от такого токового нагружения провод марки ПНП 2 × 2.5 с ПВХ изоляцией получает серьезное термическое повреждение. Текущая температура его нагрева при $\theta_{10} = \theta_0 = 20^{\circ}$ С, рассчитанная по (2), показывает, что она в рассматриваемом случае достигает уровня $\theta_1 \approx 760^{\circ}$ С. Как видно, эта температура значительно превышает предельно допустимую кратковременную температуру нагрева электрических проводов с ПВХ изоляцией, равную $\theta_{1\text{short}} \approx 150^{\circ}$ С [8, 14]. Поэтому провод марки ПНП 2 × 2.5 с ПВХ изоляцией не удовлетворяет

Рис. 6. Внешний вид фрагмента термически поврежденного провода марки ПНП 2 × 2.5 с ПВХ изоляцией при параллельном включении его двух сплошных круглых медных жил общим сечением $S_1 \approx 5 \text{ мм}^2$ в сильноточную разрядную цепь мощного высоковольтного генератора ГИТМ-10/350 [17] после протекания по ним апериодического импульса тока 17/335 мкс искусственной молнии при $I \approx 83.8 \text{ кA}$, $\delta_{1\text{max}} \approx I/S_1 \approx 16.8 \text{ кA/мм}^2$, $\tau_f \approx 17 \text{ мкс}$, $t_{\text{max}} \approx 27 \text{ мкc}$, $\tau_p \approx 335 \text{ мкc}$, $k \approx 1.088$, $J \approx 1.74 \cdot 10^6 \text{ Дж/Ом и } q \approx 39.5 \text{ Кл}$

условию (1) термической молниестойкости применительно даже к III–IV уровням молниезащиты ЭЭО [1–6]. Именно это обстоятельство и подтвердил сильноточный электротермический эксперимент, выполненный с применением этого провода на высоковольтном генераторе ГИТМ-10/350, в результате которого исследуемый провод марки ПНП 2 × 2.5 с ПВХ изоляцией был выведен из строя. Укажем, что достигаемая в этом проводе максимальная плотность импульса тока $\delta_{1max} \approx 16.8 \text{ кA/мм}^2$ существенно превышает предельно допустимую для нее амплитудную плотность импульса тока 17/335 мкс искусственной молнии $\delta_{1per} \approx 9.56 \text{ кA/мм}^2$, рассчитанную по (10) при $\theta_{10} = \theta_0 = 20^{\circ}$ С с учетом данных табл. 2 для параметра C_{1per} . Для сравнения этого значения δ_{1per} с соответствующей плотностью импульса тока 10/350 мкс заметим, что в последнем случае она для провода марки ПНП 2 × 2.5 с ПВХ изоляцией составляет около 9.54 кА/мм² (табл. 3).

На рис. 7 и 8 представлены соответственно осциллограмма апериодического импульса тока 17/265 мкс (I ≈ 83.8 кА) искусственной молнии и последствия его электротермического воздействия на сплошную круглую алюминиевую жилу ($S_1 \approx 6 \text{ мм}^2$, $\delta_{1\text{max}} \approx I/S_1 \approx 14 \text{ кA/мм}^2$) провода марки АППВнг 2 × 6 с ПВХ изоляцией [18] длиной 0.5 м, включенную в сильноточную разрядную цепь высоковольтного генератора ГИТМ-10/350 [17]. Из-за электрического взрыва алюминиевой жилы временные параметры протекающего через нее импульса тока претерпевают заметные изменения, что влечет за собой уменьшение "энергетики" токового импульса, воздействующего на провод: амплитуда импульса тока I снизилась примерно на 2%, интеграл действия импульса тока Ј уменьшился примерно на 22% и протекший через провод электрический заряд q снизился примерно на 23%. Несмотря на это, тепловой энергии, выделившейся на алюминиевой жиле с поперечным сечением $S_1 \approx 6$ мм² провода марки АППВнг 2 × 6 с ПВХ изоляцией, оказалось вполне достаточно для ее электрического взрыва, сопровождающегося полной сублимацией электропроводящего материала жилы, и вывода провода в целом из строя. Расчетная оценка предельно допустимой плотности δ_{1per} импульса тока 17/265 мкс искусственной молнии, выполненная по (10) при $\theta_{10} = \theta_0 = 20^{\circ}$ C с учетом данных табл. 2 для параметра C_{1per} , показывает, что в этом случае ее численное значение составляет 6.87 кА/мм². Заметим, что для импульса тока 10/350 мкс искусственной молнии величина $\delta_{1\text{per}}$ для провода марки АППВнг 2 × 6 с ПВХ изоляцией при $\theta_{10} = \theta_0 = 20^{\circ}$ C, определенная в соответствии с данными табл. 2 для параметра C_{1per}, оказалась примерно равной 6.17 кА/мм². Видно, что для рассматриваемого провода опытное значение $\delta_{1max} \approx 14 \text{ кA/mm}^2$ примерно в 2 раза превышает расчетное значение δ_{1per} ≈ 6.87 кА/мм². Что касается максимального значения критической плотности δ_{1cr} импульса тока 17/265 мкс искусственной молнии для алюминиевой жилы указанного Рис. 7. Осциллограмма апериодического импульса тока 17/265 мкс искусственной молнии в сильноточной разрядной цепи мощного высоковольтного генератора ГИТМ-10/350 [17] при электрическом взрыве сплошной круглой алюминиевой жилы сечением $S_1 \approx 6 \text{ мм}^2$ провода марки АППВнг 2 × 6 с ПВХ изоляцией при $I \approx 83.8$ кА, $\delta_{1\text{max}} \approx I/S_1 \approx 14 \text{ кА/мм}^2$, $\tau_{\rm f} \approx 17 \text{ мкс}$, $t_{\text{max}} \approx 27 \text{ мкс}$, $\tau_{\rm p} \approx 265 \text{ мкс}$, $k \approx 1.107$, $J \approx 1.41 \cdot 10^6 \text{ Дж/Ом и } q \approx 31.7 \text{ Кл.}$ Масштаб для тока и времени — 22.52 кА/дел и 50 мкс/дел соответственно

Рис. 8. Промежуточная стадия электрического взрыва сплошной круглой алюминиевой жилы сечением $S_{\rm I} \approx 6 \text{ мм}^2$ провода марки АППВнг 2 × 6 с ПВХ изоляцией в сильноточной разрядной цепи мощного высоковольтного генератора ГИТМ-10/350 [17] при $I \approx 83.8 \text{ кA}$, $\delta_{\rm 1max} \approx I/S_{\rm I} \approx 14 \text{ кA/мм}^2$, $\tau_{\rm f} \approx 17 \text{ мкс}$, $\tau_{\rm p} \approx 265 \text{ мкс}$, $k \approx 1.107$, $J \approx 1.41 \cdot 10^6 \text{ Дж/Ом и } q \approx 31.7 \text{ Кл}$

провода, оцененного по (11) с учетом данных табл. 2 для параметра D_{1cr} при $\theta_{10} = \theta_0 = 20^{\circ}$ С, то оно составляет около 23.31 кА/мм². Сравнение этого численного значения δ_{1cr} с количественными данными, характерными для импульса тока временной формы 10/350 мкс искусственной молнии, приведенными в табл. 3 для подобной КПП, работающей в аналогичных условиях ($\delta_{1cr} \approx 20.93$ кА/мм²), свидетельствует о том, что, по-видимому, расчетные оценки максимальных значений критических плотностей δ_{icr} импульса тока короткого удара искусственного грозового разряда для проводов и кабелей цепей ЭЭО с алюминиевыми токонесущими частями, сделанные по (11) с учетом данных табл. 1 и 2, являются завышенными. Возможной причиной тому может быть используемое нами значение интеграла импульса тока $J_{icr} \approx 1.09 \cdot 10^{17}$ Дж/(Ом·м⁴) для алюминия при его электрическом взрыве, определенное грубо в [15] при комнатной температуре ($\theta_{i0} = \theta_0 = 20^{\circ}$ C). Согласно уточненной аналитической оценке интеграла импульса тока составляет $J_{icr} \approx 0.82 \cdot 10^{17}$ Дж/(Ом·м⁴).

Предельно допустимое сечение $S_{1\text{per}}$ алюминиевой жилы исследуемого опытного образца провода марки АППВнг 2 × 6 с ПВХ изоляцией для импульса тока 17/265 мкс ($I \approx 83.8$ кА, $k \approx 1.107$) искусственной молнии, рассчитанное по (6) при $\theta_{10} = \theta_0 = 20^{\circ}$ С и $C_{1\text{per}} \approx 0.974 \cdot 10^8 \text{ Дж}^{1/2} \cdot \text{Ом}^{-1/2} \cdot \text{м}^{-2}$ (табл. 2), составляет примерно 12.18 мм². Видно, что это численное значение $S_{1\text{per}}$ практически вдвое превышает сечение $S_1 \approx 6 \text{ мм}^2$ реальной алюминиевой жилы. Критическое сечение $S_{1\text{cr}}$ для алюминиевой жилы прово-

да марки АППВнг 2 × 6 с ПВХ изоляцией, испытывающей при $\theta_{10} = \theta_0 = 20^{\circ}$ С электротермическое действие импульса тока 17/265 мкс молнии, рассчитанное по (9) с учетом данных табл. 2, составляет примерно 3.59 мм². Экспериментальные данные, полученные с использованием опытного образца провода марки АППВнг 2 × 6 с ПВХ изоляцией и мощного генератора ГИТМ-10/350, говорят о том, что значения критических сечений S_{1cr} КПП с алюминиевыми жилами (оболочками), рассчитанные по (9), являются заниженными не менее чем на 25%. Заниженные значения S_{icr} и завышенные значения δ_{icr} алюминиевых токонесущих частей проводов (кабелей) ЭЭО, даваемые расчетными соотношениями (9) и (11), указывают на погрешность, заложенную априори в количественном определении параметра D_{icr} и соответственно в численном значении критического интеграла импульса тока $J_{icr} \approx 1.09 \cdot 10^{17}$ Дж/(Ом · м⁴) для алюминия [15].

Выводы

1. Разработанный теплофизический подход позволяет выполнять экспертную оценку термической стойкости электрических проводов и кабелей с медными (алюминиевыми) жилами (оболочками) с ПВХ и ПЭТ изоляцией силовых цепей объектов промышленной электроэнергетики к воздействию на них апериодического импульса тока временной формы 10/350 мкс короткого удара линейной молнии с нормированными по требованиям действующих международных (национальных) стандартов АВП и допусками на них. Предложенный подход может быть реализован с использованием критерия (1) термической молниестойкости КПП электрических цепей ЭЭО, соотношения (2) для определения температуры нагрева токонесущих частей проводов (кабелей) стандартным импульсом тока 10/350 мкс искусственной молнии, формул (6) и (9) для нахождения предельно допустимых и критических поперечных сечений токонесущих жил (оболочек) проводов (кабелей) силовых цепей ЭЭО и соотношений (10) и (11) для определения предельно допустимых и критических плотностей нормированного импульса тока 10/350 мкс искусственной молнии в жилах (оболочках) проводов и кабелей ЭЭО.

2. Апробация предложенного теплофизического подхода по оценке термической молниестойкости электрических проводов и кабелей силовых цепей ЭЭО, проведенная в условиях высоковольтной лаборатории на уникальном мощном генераторе типа ГИТМ-10/350 импульсов тока 10/350 мкс искусственной молнии, нормированных в соответствии с [1–6], подтвердила достоверность полученных в его рамках расчетных соотношений и работоспособность самого подхода в целом. Результаты расчета по этим соотношениям тепло- и электрофизических параметров инженерных сетей ЭЭО могут быть использованы для обеспечения их молниезащиты и повышения уровня функциональной и противопожарной безопасности этих сетей в условиях грозовой активности.

Обозначения

 c_{0i} — удельная объемная теплоемкость материала жилы (оболочки) провода (кабеля) ЭЭО, Дж/(м³·°C); C_{iper} и D_{icr} — электрофизические параметры, Дж^{1/2}·Om^{-1/2}·M⁻²; i(t) — импульсный ток молнии; I — амплитуда импульса тока молнии, А; J — интеграл действия импульса тока молнии, Дж/Ом; J_{icr} — критическое значение интеграла импульса тока при электрическом взрыве материала жилы (оболочки), Дж/(Ом · м⁴); К_с — коэффициент преобразования измерительного шунта, A/B; k — нормирующий коэффициент; q — электрический заряд молнии, протекающий через жилу (оболочку) провода (кабеля) ЭЭО, Кл; *S_i* — поперечное сечение жилы (оболочки), м²; Siper и Sicr — предельно допустимое и критическое сечения жилы (оболочки), м²; t — текущее время, с; U_{ch,1-3} и Uch,4 — зарядное напряжение трех отдельных и четвертой отдельной конденсаторных батарей генератора ГИТМ-10/350, В; α_1 и α_2 — коэффициенты формы апериодического импульса тока молнии, c^{-1} ; β_{0i} — тепловой коэффициент удельной электропроводности материала жилы (оболочки), м³/Дж; у_{0i} — удельная электропроводность материала жилы (оболочки), (Oм·м)⁻¹; δ_{imax} — амплитудная плотность импульса тока в токонесущих частях провода (кабеля) ЭЭО, А/м²; б_{iper} и б_{icr} — максимальная предельно допустимая и критическая плотности импульса тока молнии в материале жилы (оболочки), A/м²; θ_i — текущая температура материала жилы (оболочки), ^oC; θ₀ — температура среды, окружающей провода и кабели ЭЭО, °С; θ_{ishort} и θ_{ilong} — предельно допустимая кратковременная и длительно допустимая температуры нагрева материала жилы (оболочки) провода (кабеля), ^оС. Индексы: с — ток; ch — заряд; cr — критический; f — фронт; p — импульс; per — допустимый; max — максимальный; short — кратковременный; long — длительный; *i* = 1, 2; 1 — жила; 2 — оболочка.

Литература

1. Protection Against Lightning. Part 1: General Principles. IEC 62305-1: 2010. Geneva: IEC Publ., 2010.

2. Protection Against Lightning. Part 2: Risk Management. IEC 62305-2: 2010. Geneva: IEC Publ., 2010.

3. *Protection* Against Lightning. Part 3: *Physical Damage to Structures and Life Hazard*. IEC 62305-3: 2010. Geneva: IEC Publ., 2010.

4. *Protection* Against Lightning. Part 4: Electrical and Electronic Systems within Structures. IEC 62305-4: 2010. Geneva: IEC Publ., 2010.

5. *Менеджмент риска.* Защита от молнии. Ч. 1: Общие принципы. ГОСТ Р МЭК 62305-1–2010. Москва: Стандартинформ, 2011.

6. *Blitzschutzbauteile*. Teil 1: *Anforderungen an Verbindungsbauteile*. Deutsche Norm DIN EN 50164-1: 2008 (VDE 0185-2001). Berlin, Buchverlag DS, 2008.

7. Баранов М. И., Носенко М. А. Исследование термического действия тока искусственной молнии на образцы металлической обшивки летательного аппарата авиационной техники. *Инженерно-физический журнал.* 2009. Т. 82, № 5. С. 972–980.

8. Баранов М. И., Кравченко В. И. Электротермическая стойкость проводов и кабелей летательного аппарата к поражающему действию импульсного тока молнии. Электричество. 2013. № 10. С. 7–13.

9. Aircraft Lightning Environment and Related Test Waveforms. SAE ARP 5412: 2013. USA, 2013. Pp. 1–56.

10. Aircraft Lightning Test Methods. SAE ARP 5416: 2013 . USA, 2013. Pp. 1-145.

11. Baranov M. I., Koliushko G. M., Kravchenko V. I., Nedzel'skii O. S., and Dnyshchenko V. N. A current generator of the artificial lightning for full-scale tests of engineering objects. *Instrum. Experim. Techn.* 2008. Vol. 51, No. 3. Pp. 401–405. doi:10.1134/S0020441208030123.

12. Баранов М. И. Особенности нагрева тонкого биметаллического проводника большим импульсным током. Электричество. 2014. № 4. С. 34–42.

13. Кухлинг Х. Справочник по физике. Пер. с нем. под ред. Е. М. Лейкина. Москва: Мир, 1982.

14. *Производство* и распределение электрической энергии. Электротехн. спр. Т. 3, Кн. 1. Под ред. И. Н. Орлова. Москва: Энергоатомиздат, 1988.

15. Кнопфель Г. Сверхсильные импульсные магнитные поля. Москва: Мир, 1972.

16. Баранов М. И. Избранные вопросы электрофизики. Т. 3: Теория и практика электрофизических задач. Харьков: Точка, 2014.

17. Baranov M. I., Koliushko G. M., Kravchenko V. I., and Rudakov S. V. A generator aperiodic current pulses of artificial lightning with a rationed temporal form of $10/350 \,\mu$ s with an amplitude of $\pm (100-200) \,\text{kA}$. *Instrum. Experim. Techn.* 2015. Vol. 58, No. 6. Pp. 745–750. doi:10.1134/S0020441215060032.

18. Белоруссов Н. И., Саакян А. Е., Яковлева А. И. Электрические кабели, провода и шнуры. Справочник. Под ред. Н. И. Белоруссова. Москва: Энергоатомиздат, 1988.

19. Баранов М. И. Аналитический расчет критических значений интеграла тока для основных металлов, применяемых в технике больших импульсных токов при электрическом взрыве проводников. *Техн. электродинамика*. 2008. № 6. С. 14–17.