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GEOMETRIC MODELING 
OF THE UNFOLDING OF 

A ROD STRUCTURE IN 
THE FORM OF A DOUBLE 
SPHERICAL PENDULUM 

IN WEIGHTLESSNESS

Дослiджено геометричну модель нового 
способу розкриття в умовах невагомостi 
стержневої конструкцiї, подiбної подвiй-
ному сферичному маятнику. Перемiщення 
елементiв конструкцiї вiдбуваються завдя-
ки дiї iмпульсiв пiротехнiчних реактивних 
двигунiв на кiнцевi точки ланок. Опис руху 
одержаного iнерцiйного розкриття стерж-
невої конструкцiї виконано за допомогою 
рiвняння Лагранжа другого роду, i, зважа-
ючи на умови невагомостi, побудованого з 
використанням лише кiнетичної енергiї сис-
теми.

На актуальнiсть обраної теми вказує 
необхiднiсть вибору та дослiдження про-
цесу активiзацiї розкриття просторової 
стержневої конструкцiї. В якостi рушiїв 
пропонується використати iмпульснi пiро-
технiчнi реактивнi двигуни, встановленi на 
кiнцевих точках ланок конструкцiї. Легшi 
i дешевшi порiвняно, наприклад, з елек-
тродвигунами або пружинними пристро-
ями. А також економiчно вигiднiшi, коли 
процес розкриття конструкцiї на орбiтi 
планується виконати лише один раз. 

Запропоновано спосiб визначення пара-
метрiв та початкових умов iнiцiювання 
коливань подвiйної стержневої конструкцiї 
з метою одержання циклiчної траєкторiї 
кiнцевої точки другої ланки. Це дозволяє 
при розрахунках процесу трансформуван-
ня уникати хаотичних рухiв елементiв кон-
струкцiї. Побудовано графiки змiни у часi 
функцiй узагальнених координат, а також 
перших та других похiдних цих функцiй. 
Тому з’явилася можливiсть оцiнити силовi 
характеристики системи в момент галь-
мування (стопорiння) процесу розкриття. 

Результати можуть використовува- 
тися як геометричнi моделi варiантiв 
розкриття великогабаритних об’єктiв в 
умовах невагомостi, наприклад, силових 
каркасiв космiчних антен чи фермених кон-
струкцiй, а також iнших орбiтальних iнф-
раструктур

Ключовi слова: стержнева конструкцiя, 
процес розкриття у космосi, двохланкова 
сферична конструкцiя, рiвняння Лагранжа 
другого роду

1. Introduction 

The construction of frames for orbital space infrastruc-
tures is associated with the transformation of rod structures 
in order to provide their required spatial position. Compo-

nents of structures are delivered into orbit in a folded form. 
Thus, a certain technology for transforming location the rods 
is needed so that the entire structure acquires the planned 
spatial shape. Such transformations are performed using the 
mechanical operation of unfolding [1, 2]. When transport-
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ing from the Earth, the structure workpieces take the form 
mostly of rectilinear rods that are connected similar to the 
elements of a multi-link pendulum. The unfolding of a double 
rod structure is expedient to consider as an equivalent of the 
"oscillation" of a double spherical pendulum in weightless-
ness. Controlling the unfolding of large structures in space is 
a complex scientific and technical task of mechanics as it has 
no analogues in the ground-based technology. It is relatively 
easy to implement it for a double (two-link) rod structure. We 
shall note that the term "pendulum" is not readily applicable 
in the case of weightlessness. Therefore, hereafter we shall 
use mostly the term "a double spherical rod structure (or 
system)".

When implementing the unfolding of a double spherical 
rod structure in weightlessness, two key technological prob-
lems arise – the choice of techniques to activate its motion 
and selecting the mechanism of fixation (locking) of the un-
folding process. The first task relates to the choice of driving 
forces for initiating the unfolding of rod structures. Not less 
important is the task to fix the angles between links using 
specialized devices, built into spherical hinges. In this case, 
it is necessary to obtain data on the magnitude of forces that 
occur in nodes at the time of fixation. We propose to use, as 
a means to initiate the unfolding of a structure, the pulse jet 
engines (the pyropack type), installed at endpoints of links of 
the rod structure. We also consider a technique to determine 
the magnitudes of forces at the nodes of a structure by the 
moment when the unfolding is over.

It is advisable to explore the dynamics of the process of 
unfolding a structure in the form of a double spherical rod 
system based on the Lagrange variational principle. There is 
a question related to the adaptation to weightlessness of the 
"oscillation" of a double spherical rod system as the base of a 
geometrical model for unfolding an orbital object. The answer 
to this question can be found in the works that address the 
application of the second-kind Lagrange equations for me-
chanical systems in weightlessness [3‒5]. Formally, it is con-
sidered that the calculations regarding the transformation of 
mechanical rod structures in weightlessness over time can be 
performed using only the concepts of kinetic energies. That 
is, when constructing the Lagrange equations of second kind, 
the potential energy of a conservative mechanical system can 
be considered as "close to zero". Following the initiation of 
oscillations by pyrotechnic pulses, the magnitude of kinetic 
energy for a small period of time should remain unchanged. 
Such conditions may be rejected in the course of further 
research.

The specified assumptions make it possible to develop a 
formal (idealized) approach to the geometrical modeling of 
the unfolding of rod structures – analogues to double spher-
ical pendulums. In addition, in the process of calculation, it 
is necessary to prevent the chaotic movements of rod struc-
tures. To avoid chaos during shape formation of the structure, 
it is required to choose such parameters at which the end-
point of the second link should move along a cyclic trajectory. 

The value of geometrical modeling manifests itself in the 
computer-generated animated movies, which visualize the 
mutual displacements of links in double spherical rod struc-
tures in the process of unfolding. Employing the developed 
models would help at the design stage to calculate the layout 
and operational parameters of the structure in general.

Thus, the relevance of the chosen subject is emphasized 
by the need to examine and implement a pulsed device as an 
easy and cheap driver for the process of unfolding a rod struc-

ture of the double spherical pendulum type. That would be 
economically justified as in the orbit the process of unfolding 
the structure is planned to be executed only once. We pro-
pose using as such a driver the pulse pyrotechnic jet engines 
installed at the endpoints of links in a double spherical rod 
structure. Pyrotechnic devices are much lighter and cheaper 
compared with known means to initiate the unfolding of a 
structure. For example, in comparison with electric motors or 
spring-loaded devices with thermal memory. All this points 
to the expedience of studying the geometric models of un-
folding the rod structures under conditions of weightlessness 
with pulsed reactive engines at the endpoints of links.

2. Literature review and problem statement

To calculate a geometrical shape of successive phases 
of unfolding a "pendular" rod structures in the plane, it is 
advisable to apply studies into dynamics of multi-link pendu-
lums. In practical terms, this represents [6] the construction 
and solving the Lagrange equations of second kind for the 
motion of a mechanical system relative to the generalized 
coordinates. As well as studying the dynamics of a multi-
link pendulum, using, for example, the methods of fractional 
calculus [7]. However, the cited (and similar) papers did not 
pay enough attention to the graphical interpretation of the 
obtained solutions.

Frame rope systems are mainly used for the unfolding of 
rod structures. Papers [8–10] give mathematical models for 
the process of unfolding a multi-link frame structure with a 
rope synchronization system. However, the application of a 
rope unfolding system in practice is limited by the size of a 
structure and the necessity to synchronize the action of elec-
tric motors, which is a separate task given the large number 
of links. A frame rope system can be considered a prototype 
of the technique for unfolding a multi-link rod structure con-
sidered in this paper.

To analyze numerically the process of unfolding the 
structures that are transformed, the possibilities of modern 
software packages that model the dynamics of mechanical 
systems are utilized. Paper [11] describes a method for the 
calculation of large-sized structures that can unfold using 
the program complexes MSC.Software. Paper [12] gives the 
example of calculating the unfolding applying the package 
of computer aided dynamic analysis of multicomponent me-
chanical systems EULER. However, the specified software 
are not capable, without appropriate add-ins, of implementing 
the "pulse" techniques for the unfolding of multi-link struc-
tures. Other variants of the unfolding systems are described 
in a review of the scientific literature [13], though there is 
no information on the "pulse" techniques for unfolding the 
multi-link rod structures with preference given to the rope 
systems whose shortcomings were indicated above.

Of theoretical importance for modeling the unfolding 
of spatial double rod structures are the studies that address 
the oscillations of spherical and double spherical pendulums. 
Paper [14] simulated the motion of a spherical pendulum 
mounted on a rotational platform. Study [15] analyses the 
dynamics of oscillations of a spherical pendulum with a 
three-dimensional periodic vibration of the suspension point. 
The issue of dynamics of a spherical pendulum with a vibrat-
ing suspension point was considered in paper [16]. Study 
[17] investigated, applying the numerical integration of the 
motion equation, the dynamic turning mode of a flexible 
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pendulum link in order to increase the smoothness of the 
drive effort.

Many studies that investigate spatial pendulums are 
based on the research into spherical pendulum and its vari-
ants. Paper [18] examines new models of pendulums, which 
are considered solid bodies with three rotating degrees of 
freedom. In such cases it is convenient to employ a single 
model of a solid body cylinder [19]. Study [20] considered 
the 3D-pendulum as a solid body, which is held at a fixed 
hinge with three rotating degrees of freedom. The patterns 
in spatial mathematical pendulums were considered in pa-
pers [21, 22]. However, the results of the specified studies 
are rather theoretical because it is difficult to apply them 
as a base for the oscillation simulation algorithm. More 
complex spatial pendulum configurations are explored 
as objects of nonlinear analysis, as well as for testing or 
development of methods to control and stabilize various 
objects. For example, paper [23] considers a general model 
of the inverted multiple control over pendulum using a 
single torque. A similar issue relates to the problem on a 
pendulum with a movable cart [24]. Paper [25] investi-
gated the inverted double solid-body pendulum, which is 
controlled by four external momenta. Another broad field 
of application of pendulum models concerns the damping 
and stabilization of phenomena, which can be interpreted 
using a mathematical double-pendulum model [26]. Study 
[27] reported results of numerical calculations of the 
complex mechanical system, similar to a double spheri-
cal pendulum. It is interesting that the results there are 
explained using multiple graphical interpretation. Paper 
[28] examines the model mapping and the visualization 
of orbits of a double spherical pendulum. In work [29], os-
cillation parameters of the double spherical pendulum are 
calculated based on the Lagrangian mechanics. In study 
[30], double pendulum configurations of the dynamic sys-
tem are also modeled applying the Lagrangian mechanics, 
employing the mathematical software packages MapleTM 
and Matlab. The [31] internet website shows the codes, 
written in the language of Matlab, for the simulation of 
oscillations of a double spherical pendulum. However, the 
cited papers did not provide the graphical confirmation of 
simulation results.

Studies [32‒35] initiated the geometric model of un-
folding, in the imaginary plane in weightlessness, a rod 
structure as the multi-link pendulum. It was believed that 
the unfolding is driven by the pulsed pyrotechnic jet en-
gines, mounted at the end points of links. The conducted 
test calculations showed the possibility of using the multi-
link rod structures with a common point of attachment. 
The [36] internet website hosts computer animated images 
to illustrate the key provisions of a given work.

The results of the scientific literature review [8‒30] re-
vealed those issues that have not yet been studied by other 
authors; that made it possible to state the following task of 
research. A far as the implementation of the idea of unfolding 
the spherical two-link structures in weightlessness by the 
pulses of jet engines, still unresolved are the issues related 
to the combination of the pulse magnitudes with the gener-
alized coordinates of double spherical rod structures. As well 
as with the scheme for initiating the motion of a structure 
elements by the influence of jet pulses on the endpoints of 
links. Not addressed yet is the task on estimating the magni-
tude of force, which occurs in the nodal elements at the time 

of fixation (locking) of elements of a two-link structure in 
the unfolded state, calculated in advance.

3. The aim and objectives of the study

The aim of this work is to demonstrate, using specific 
examples, the geometric model of unfolding, under condi-
tions of weightlessness, a rod structure, similar to a double 
spherical pendulum. We suggest using the pulse pyrotechnic 
jet engines mounted at the end points of the structure links 
to initiate the motion of the structure.

To accomplish the aim, the following tasks have been set:
– to construct and solve a system of the Lagrange 

differential equations of the second kind to describe in 
weightlessness the motion of elements of double spherical 
rod structures;

– in order to simulate the action of pulse jet engines, to 
develop a scheme of the initiation of motion of double spher-
ical rod structures by the influence of pulses from engines at 
the endpoints of links;

– using computer animation, to predict over time the 
mutual arrangement in space of links of double spherical rod 
structures and to determine, based on it, the time of fixation 
(locking) of the unfolding, required for the experiment;

– to prevent chaotic motions in the process of unfolding, 
to design a technique for determining the parameters and 
initial conditions for the initiation of oscillations of a double 
rod structure in order to obtain a cyclic trajectory of the 
endpoint of the second link;

– to construct charts of the time-dependent changes 
of functions of generalized coordinates, as well as the first 
and second derivatives of these functions; based on this, to 
estimate the force characteristics of the system at the time of 
fixation (locking) of the unfolding;

– to provide test examples of the unfolding of double 
spherical rod structures in weightlessness.

4. Development of a geometric model of the unfolding 
process of a rod structure, similar to a double spherical 

pendulum, in weightlessness 

4. 1. Explanation of the principle of the unfolding 
of a rod structure, similar to the spherical and double 
spherical pendulums

When implementing any scheme of unfolding a rod 
structure in weightlessness, there is a problem on the choice 
of driving forces as a means to activate this process. That is, 
selecting the technical devices or technological processes for 
initiating the unfolding of rod structures in orbit. In prac-
tice, a one-time unfolding is most likely, when a rod struc-
ture acquires a geometrical shape and gets fixed immediately 
after having been delivered to the orbit. In this case, electric 
motors or other technical devices would become an extra 
cargo following the unfolding and fixation of the structure. 
An alternative to this circumstance could be the pyrotechnic 
pulse jet engines.

To explain the idea of the emergence of motion, we shall 
consider a non-stretchable rod of length r with point of 
attachment O, the endpoint of which is the place to where 
a load with mass m is attached (Fig. 1). Stationarity of the 
point of attachment is ensured by to its attachment to space-
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craft whose mass is orders of magnitude larger than the mass 
of a pendulum cargo.

Fig. 1. Schematic of spherical pendulum

The initiation of oscillations in weightlessness of a spher-
ical rod (the name is by analogy with spherical pendulum) is 
carried out by selecting the direction of action and the mag-
nitude of the pulse applied to the endpoint of the rod using a 
jet engine of the pulse type. We shall consider the generalized 
coordinates the angles u(t) and v(t), formed by the horizontal 
projection of the rod with the Ox axis and the rod with the 
Oz axis. Denote as virtual vector RV the pulse action in the 
direction of opening the angle v and as virtual vector RU ‒ 
the pulse action in the direction of opening the angle u. The 
desired direction of pulse action from a jet engine will be 
defined by the total real vector R=RU+RV. Location of a jet 
engine will be related to point C and we shall accept the cargo 
of the rod structure with mass m.

Initial position of the rod will be defined based on the 
coordinates of vector U0={u(0), v(0)}. Expression U0'={u'(0), 
v'(0)} will denote the magnitudes of velocities of oscillation 
initiation. This expression means that the cargo of mass m is 
given a pulse of magnitude mu'(0) in the direction of opening 
the angle u, and at the same time the pulse of magnitude 
mv'(0) in the direction of opening the angle v. In other words, 
the opening angles u(0) and v(0) are given initial velocities 
u'(0) and v'(0), respectively. Given this, a pendulum system 
must unfold by inertia, which explains the term "inertial 
unfolding system". As a pyrotechnic pulse jet engine, one 
can use any device capable of ensuring the magnitude of 
the pulse, calculated in advance (for example, a pyropack). 
Therefore, the possibility of applying the estimated magni-
tudes of pulses from jet engines is based on the relation with 
the numeric values of instantaneous velocities u'(0) and v'(0).

The calculation of oscillation of a spherical rod structure 
is performed using the Lagrangian [18], whose notation coin-
cides with the expression for kinetic energy

( )2 2 20,5 ,L rm x y z= + +′ ′ ′
	

(1)

where

( ) ( )( ) cos ( ) sin ( ) ;x t r u t v t=

( ) ( )( ) sin ( ) sin ( ) ;y t r u t v t=

( )( ) cos ( ) .z t r v t= 	 (2)

With respect to (2), the expression for the Lagrangian 
takes the form

( )2 2 2 2 20,5 cos .L mr u u v v= − +′ ′ ′ 	 (3)

Here ( );
d

u u
dt

t′ =  ( )v v t
d
dt

′ =  are the derivatives from  
 
the function of description of the generalized coordinates. 
Applying expression (3), we obtain a system of two Lagrange 
equations of the second kind :

2cos sin 2 0;u u v u v v− + =′′ ′′ ′ ′

2 cos sin 0.v u v v− =′′ ′
	

(4)

When solving the system of equations (4), in addition 
to the length of rod r the cargo mass m, one should take 
into consideration the values for the initial angle of devi-
ations U0={{u(0), v(0)}, as well as the values of velocities 
given to the angles of deviations: U0

'={u'(0), v'(0)}. By 
satisfying the initial conditions, a system of equations (4) 
is solved approximately using the Runge-Kutta method 
in the environment of the mathematical software package 
maple. The derived solutions are conventionally denoted 
by symbols U(t), V(t). That makes it possible, in the spatial 
coordinate system Охуz, using formulae (2), to determine 
coordinates of the link's endpoint (xС, yС, zС) at time point 
t. To compute these coordinates, in the expressions for 
functions (2) in the description of coordinates, it is formal-
ly needed to replace the lowercase letters u and v with big 
letters U and V. The approximated shape of the trajectory 
of displacement of endpoint C will be obtained after we 
connect the close points by sections 

Here are examples that show the results of motion of 
a spherical rod in weightlessness (Fig. 2, a). To compare 
the displacement trajectories of an endpoint of the rod, 
we shall also show the results of oscillation in the field of 
Earth gravity (Fig. 2, b) under the same initial conditions. 
Motion parameters are as follows: r=1; m=1; U0={0, /2}, 
U0

'={1.56, 2}. Integration time T=5..

a                                                 b

Fig. 2. Motion trajectory of point C: a ‒ in weightlessness; 
b – in the field of Earth gravity

Next, consider the motion of a double spherical rod 
structure in weightlessness. It is believed that the double rod 
structure is attached to a spherical hinge, fixed on a space 
craft. Mass of the space craft is orders of magnitude larger 
than the total mass of elements of the structure, which is why 
the attachment node is considered stationary. We shall also 
accept that rods are made of lightweight and strong carbon 
fiber, so the entire mass of the rod structure will be concen-
trated in the cargos of nodular points. A beginning of the 
first link is attached to a fixed point O, and the beginning of 
the second link is attached to the end point of the first link 
with coordinates (x1, y1, z1) (Fig. 3). The generalized coordi-
nates are considered to be angles u1(t) and v1(t), as well u2(t) 
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and v2(t), formed by the appropriate horizontal projections 
of rods with the Ox axis, as well as the respective rods with 
the Oz axis (Fig. 3).

Fig. 3. Schematic of double spherical rod structure

The initiation of oscillations of a double spherical rod 
structure in weightlessness is performed similarly to the 
spherical rod from the previous example. Specifically, by 
choosing the direction of action and the magnitude of 
pulses given to the endpoints of a pendulum links using jet 
engines of the pulse type. Virtual vector RV1 is the result 
of the pulse action in the direction of opening the angle 
v1; and virtual vector RU1 is obtained as a result of the 
pulse action in the direction of opening the angle u1. The 
summary real vector R1=RU1+RV1 defines the required 
direction of the pulse action of the first jet engine. Simi-
larly, virtual vector RV2 is the result of the pulse action in 
the direction of opening the angle v2; and virtual vector 
RU2 is derived as the result of the pulse action in the di-
rection of opening the angle u2. The summary real vector 
R2=RU2+RV2 defines the required direction of the pulse 
action of the second jet engine.

The initial position of the double rod structure will be 
determined based on the coordinates of vector U0={u1(0), 
v1(0), u2(0), v2(0)}. Expression U0={u1(0), v1(0), u2(0), 
v2(0)} will denote the magnitudes of velocities of oscilla-
tion initiation. This expression means that the cargo with 
mass m1 was given the pulse of magnitude m1u1(0) in the 
direction of opening the angle u1, and at the same time the 
pulse of magnitude m1v1(0) in the direction of opening the 
angle v1. The same applies to the second pair of angles and 
mass m2. Hence it follows that the opening angles u1(0) 
and v1(0) are given initial velocities u1(0) and v1(0), and 
the opening angles u2(0) and v2(0) – velocities u2(0) and 
v2(0), respectively. Therefore, the possibility of using the 
estimated magnitudes of the pulses from jet engines is also 
based on the relation with the numerical values of instan-
taneous velocities u(0) and v(0).

The requirements to manage the action of pyrotechnic 
engines of the rod structure imply specific conditions for 
the design of a spherical hinge, located between the links of 
the structure. Namely, a spherical hinge in the node should 
provide for the unfolding of its links under condition of 
the existence of two axes of rotation, which run through 
the center point of the hinge. This can be achieved through 
the proper design of a spherical hinge in the pendulum node, 
which was described, for example, in papers [37, 38]. 

The important issues related to the organization of motion 
of a rod structure include the possibility to prevent chaotic 
movements of rod structures. This is achieved through a prop-
er selection of magnitudes of pyrotechnic engines to ensure 

the movements of elements that are comprehensible during 
calculations. This can be achieved by organizing the cyclic 
non-chaotic trajectories of the endpoint of the second link.

4. 2. Determining a non-chaotic cyclic trajectory 
of the motion of an endpoint of the second link of a rod 
spherical structure

To understand the nature of oscillations of two-link 
spherical rod structures, one must have the predicted motion 
trajectory of an endpoint of the second link of the pendulum. 
An acceptable curve in this case would be a non-chaotic 
cyclic trajectory. A cyclic trajectory is believed to be the dis-
placement trajectory of endpoint С(xС, yС, zС) of the two-link 
structure whose geometrical shape is periodically repeated 
(possibly, approximately). The cyclic character of a trajectory 
is ensured by a proper choice of parameters for a two-link 
spherical structure and by the initial conditions of its motion.

Condition U0={u1(0), v1(0), u2(0), v2(0)} satisfies the 
"starting" geometrical shape of the structure. In our case, it 
should take a "folded" form, suitable to deliver into orbit. For 
example, the following examples will employ condition U0= 
={0, /2, –, /2}. To adjust the shape of the trajectory, thee 
remains the condition U0

' ={u1(0), v1(0), u2(0), v2(0)}, 
which defines the magnitudes of velocities of oscillation 
initiation. The magnitudes of pyrotechnic charges should be 
aligned with these velocities.

Thus, the question arises: how can we find, for the values 
of the initial deviation angles U0={u1(0), v1(0), u2(0), v2(0)}, 
for the lengths of links L={r1, r2}, and the values of cargo 
masses m={m1, m2}, such values for the velocities of deviations 
U0

' ={u1(0), v1(0), u2(0), v2(0)} so that the trajectory of the 
endpoint of the second link would have a cyclical nature?

Paper [39] described a technique to define a set of param-
eters of pendulum oscillations (in the field of Earth gravity, 
which does not compromise generalization), which could en-
sure the cyclic displacement trajectory of the second cargo, 
for example, a double pendulum. We shall give an interpre-
tation of the technique at the level of graphical explanations. 
The main idea is the following. Let there be a conservative 
oscillatory system whose description includes, among others, 
a generalized coordinate ‒ denote it as function u(t). ). We 
shall numerically solve the Lagrangian differential equations 
of the second kind and build an approximated image of the 
integral curve in phase space {u, Du, t} of the generalized 
variable u(t). The image will consist of a set of line segments 
that connect successive points, obtained as a result of an 
approximate solution to the equation. This visualization will 
depend on a certain value of the "controlling" parameter of 
the problem, or the value of the initial condition (denote it 
as p). The random values of p will result in the formation in 
phase space {{u, Du, t} of a "chaotic" integral curve whose 
projection onto the phase plane {u, Du} would be also a "cha-
otic" phase trajectory (Fig. 4, a). Selecting a random value 
for p during calculation will lead to the chaotic oscillations 
of the pendulum cargo.

In the case of changing the values for the "controlling" pa-
rameter p, the character of the phase trajectory must change 
appropriately. At the critical value р=р0, the character of the 
phase trajectory will change at the qualitative level; it will 
turn into a "focused" curve (Fig. 4, b). In the phase plane  
{u, Du}, one would observe a kind of the optical effect, "sharp-
ening" the chaos of phase trajectories (paper [39] called this 
phenomenon a projection focusing).
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a                                                 b 

Fig. 4. Integral curves and phase trajectories for:  
a – random value of p; b – computed value р=р0

Taking into consideration the value of parameter р=р0 

in the process of solving a Lagrange equation of the second 
kind make it possible to calculate the coordinates of points, 
which should sit along the non-chaotic trajectory of the 
pendulum trace. So, the non-chaotic technological oscilla-
tion trajectories of an element of the pendulum mechanical 
system are shown in the images of phase trajectories in the 
form of "focused" curves. This can be formulated as follows: 
the critical value of parameter p will be obtained at the 
time when the image of the projection of the integral curve 
onto a phase plane (that is, the phase trajectory) acquires 
the minimum area (in pixel dimension).

In practice, the reported approach was implement-
ed using the graphical information processing library 
Imaobtainools from the maple software package. Below 
is the corresponding text from a fragment of the program.

Assume we have S arrays of points under condition 
that the s-th among them defines a family of curves,  
x[i] := solu(w); y[i] := dsolu(w), when parameters s and w 
change in a single step from zero to S and W, respectively. 
To form the image and to analyze it, we shall use the soft-
ware maple, fragments of which are shown in Fig. 5, a‒c.

a 

b
 

c 

Fig. 5. Blocks of the program to form the image and to 
analyze it: a – forming a bitmap image of the curve; 

b – converting a bitmap image of the curve into a graphic 
file; c – determining the value s, which corresponds to the 

minimum number of pixels in the image

The result of execution of the program is the determined 
value of parameter s, which would match the minimum 
number of pixels in a rectangle of pixels of size N per M. By 
using the found parameter s, one could calculate the value of 
the controlling parameter and to map the non-chaotic cyclic 
trajectory of the second cargo of the pendulum. The values of 
all parameters are given in conventional values.

4. 3. Geometric modeling of oscillations of a double 
spherical pendulum in weightlessness

We shall calculate the oscillations of a double spherical 
rod structure using the Lagrangian [28] whose notation co-
incides with the expression for kinetic energy

( )
( )

2 2 2
1 1 1 1 1

2 2 2
2 2 2 2 2

0,5

0,5 ,

L r m x y z

r m x y z

= + + +′ ′ ′

+ + +′ ′ ′ 	 (5)

where

( ) ( )1 1 1 1( ) cos ( ) sin ( ) ;x t r u t v t=

( ) ( )1 1 1 1( ) sin ( ) sin ( ) ;y t r u t v t=

( )1 1 1( ) cos ( ) ;z t r v t=

( ) ( ) ( ) ( )1 1 1 2 2 2( ) cos ( ) sin ( ) cos ( ) sin ( ) ;Cx t r u t v t r u t v t= +

( ) ( ) ( ) ( )1 1 1 2 2 2( ) sin ( ) sin ( ) sin ( ) sin ( ) ;Cy t r u t v t r u t v t= +

( ) ( )1 1 2 2( ) cos ( ) cos ( ) .Cz t r v t r v t= + 	 (6)

Using the Lagrangian (5) and formulae (6), we build a 
system of four Lagrange equations of the second kind:

1 1

0;
d L L
dt u u

 ∂ ∂
− = ∂ ∂′ 

 

1 1

0;
d L L
dt v v

 ∂ ∂
− = ∂ ∂′ 

2 2

0;
d L L
dt u u

 ∂ ∂
− = ∂ ∂′ 

 
2 2

0.
d L L
dt v v

 ∂ ∂
− = ∂ ∂′ 

	 (7)

Here

( )1 1 ;
d

u u
dt

t′ =
 

( )1 1 ;
d

v v
dt

t′ =

( )2 2 ;
d

u u
dt

t′ =  ( )2 2

d
v v

dt
t′ =

	
are the derivatives from the function of description of the 
generalized coordinates. Equations (7) in the expanded 
form are not given due to their cumbersome form. We em-
ployed the mathematical software package maple, able to 
operate with information in the form of analytical expres-
sions. For example, to operate with the derived "computer" 
approximated solution to a differential equation as a normal 
function.

When solving the system of Lagrange equations of the 
second kind, one should consider coordinates of such vectors as: 
the lengths of links: L={r1, r2,}; the values of cargo masses: m= 
={m1, m2}; the values for the initial deviation angles: U0={u1(0), 
v1(0), u2(0), v2(0)}, as well as the values for velocities given to the 
deviation angles: U0={u1(0), v1(0), u2(0), v2(0)}.
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By satisfying the initial conditions, the system of the La-
grange equations of the second kind (7) was solved approxi-
mately, using the Runge-Kutta method, in the environment 
of the mathematical software package maple. The solutions 
obtained are conditionally indicated by symbols U1(t), V1(t), 
U2(t), V2(t). This allows us to determine, in the spatial Охуz 
coordinate system, using formulae (6), the "real" coordinates 
of the endpoint nodal point (xС, yС, zС) of the second link of the 
pendulum at time t. To compute these coordinates, one must for-
mally replace, in the expressions of functions (6) that describe 
coordinates of the nodal elements of pendulum, the lowercase 
letters u and v with big letters U and V [34]. The approximated 
form of the displacement trajectory of endpoint point C will be 
obtained after we connect close points by segments.

Below are the examples of geometric modeling of the 
unfolding of two-link spherical rod mechanisms. Values of 
all parameters are given in conventional values. Given that a 
two-link structure is delivered into orbit in the folded form, 
in all the examples one of the initial conditions will take the 
form of U0={0, /2, –, /2}. We also consider m1=1 and 
m2=1. Force characteristics are calculated as the product of 
masses by the value of the second derivative (acceleration). 
In the examples given below we calculated systems com-
posed of six double spherical rod structures within the plane 
with a common fixed point [32]. Angles between the starting 
locations of rod structures are /3 (Fig. 6).

Fig. 6. Starting position of six two-link structures within plane

We have calculated and constructed for each example:
– the values of velocities given to the deviation angles, 

which ensure a cyclic non-chaotic trajectory of the endpoint of 
the second rod structure and its image;

– certain phases in the location of links of two-link rod 
mechanisms in the process of unfolding;

– phase trajectories of functions of the generalized coordi-
nates that correspond to a cyclic non-chaotic trajectory of the 
endpoint of the second link;

– time-dependent charts of change in the values of angles 
as functions of the generalized coordinates, as well as the first 
(velocity) and second (acceleration) derivatives from these 
functions;

– based on the acceleration charts, we mapped the diagrams 
of force characteristics that arise in the moment of locking the 
unfolding of structures:

Fu1=m1d2u1(t)dt2; Fv1=m1d2v1(t)dt2;

Fu2=m2d2u2(t)dt2; Fv2=m2d2v2(t)dt2;

– variants of the unfolding of six two-link rod mechanisms 
with a common fixed point.

The [36] internet site hosts the animated images of the un-
folding processes of double spherical rod structures.

Example 1. r1=2; r2=1; U0={1, –1.024, 1.9, 0.5}. Integra-
tion time T=6.6. Fig. 7 shows a cyclic trajectory of endpoint 
C and a position of the double structure at some point of 
time. Fig. 8 shows phase trajectories of functions of the gen-

eralized coordinates that correspond to a cyclic non-chaotic 
trajectory of the endpoint of the second link.

a                                  b 

Fig. 7. Cyclic motion trajectory of point C for example 1: 
a – t=0.858; b – t=1.98

a                                  b 

с                                  d 

Fig. 8. Phase trajectories of generalized coordinates for 
example 1: a – u1(t); b – v1(t); c – u2(t); d – v2(t)

Fig. 9‒12 show time-dependent charts of change in the 
magnitudes of angles as functions of the generalized coor-
dinates, the first derivatives from these functions, as well as 
the diagrams of force characteristics arising at the time of 
locking the unfolding of a structure.

a                                    b                              c 

Fig. 9. Charts of generalized coordinate u1(t) of the first link: 
a – u1(t); b – du1(t)/dt; c – Fu1

a                                    b                              c 

Fig. 10. Charts of generalized coordinate v1(t) of the first link: 
a – v1(t); b – dv1(t)/dt; c – Fv1
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a                                b 

с
                                

d 

Fig. 15. Phase trajectories of generalized coordinates for 
example 2: a – u1(t); b – v1(t); c – u2(t); d – v2(t)

Example 3. We show the formation of multi-link 
structures similar to the geometrical models of sections 
of foldable trusses [1, 2] We accept r1=1; r2=2; U0= 
={1, –4.9, –1, 3}. Integration time T=6.2. Fig. 21 shows 
a cyclic motion trajectory of endpoint C, as well as the 
position of a double structure over certain moment of 
time; Fig. 22 shows phase trajectories of functions of the 
generalized coordinates.

a                               b                               c

Fig. 16. Charts of generalized coordinate u1(t) of the first link: 
a – u1(t); b – du1(t)/dt; c – Fu1

  

  
 

 
 

 

a                                    b                              c 

Fig. 17. Charts of generalized coordinate v1(t) of the first link: 
a – v1(t); b – dv1(t)/dt; c – Fv1 

  

  
 
  
 

 
 

 

a                                    b                              c 
Fig. 18. Charts of generalized coordinate u1(t) of the first link: 

a – u2(t); b – du2(t)/dt; c – Fu2

Fig. 23‒26 show the time-dependent charts of changes in 
the magnitudes of angles as functions of the generalized co-

a                                    b                                    c 

Fig. 11. Charts of generalized coordinate u2(t) of the second 
link: a – u2(t); b – du2(t)/dt; c – Fu2

a                                    b                                    c 

Fig. 12. Charts of generalized coordinate v2(t) of the second 
link: a – v2(t); b – dv2(t)/dt; c – Fv2

  
 

        

a                                              b

Fig. 13. Certain spatial structures depending on the time of 
unfolding: a – t=2.4;b – t=4.1

Example 2. r1=1; r2=2; U0={3, 3, –0.5, 0.5}. Integration 
time T=2.95. Fig. 14 shows a cyclic motion trajectory of 
endpoint C, as well as the position of a double structure over 
certain moments of time; Fig. 15 shows phase trajectories of 
functions of the generalized coordinates.

a                                                b 

Fig. 14. Cyclic motion trajectory of point C for example 2:  
a – t=0.9; b – t=2.44

Fig. 16‒19 show the time-dependent charts of changes 
in the magnitudes of angles as functions of the generalized 
coordinates, the first derivatives from these functions, as 
well as the diagrams of force characteristics arising at the 
time of locking the unfolding of a structure.

Fig. 20 shows the time-dependent variants of the un-
folding of six two-link rod mechanisms with a common 
fixed point for example 2.
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ordinates, the first derivatives from these functions, as well 
as the diagrams of force characteristics arising at the time of 
locking the unfolding of a structure.

a                              b                              c 

Fig. 19. Charts of generalized coordinate v1(t) of the first link: 
a – v2(t); b – dv2(t)/dt; c – Fv2

a                                                b 

Fig. 20. Certain spatial structures dependent on time:  
a – t=2; b – t=2.45

a                                   b 

Fig. 21. Cyclic motion trajectory of point C for example 2:  
a – t=3.5; b – t=4.8

a                                               b 

с                                               d 

Fig. 22. Phase trajectories of the generalized coordinates for 
example 2: a – u1(t); b – v1(t); c – u2(t); d – v2(t)

Fig. 23‒26 show the time-dependent charts of changes 
in the magnitudes of angles as functions of the generalized 
coordinates, the first derivatives from these functions, as well 
as the diagrams of force characteristics arising at the time of 
locking the unfolding of a structure.

 

   
 

 
 

  
    
 

 
 
 
  
 

 
 

 

a                                b                                c 

Fig. 23. Charts of generalized coordinate u1(t) of the first link: 
a – u1(t); b – du1(t)/dt; c – Fu1

Fig. 27 shows the time-dependent variants of the unfold-
ing of six two-link rod mechanisms with a common fixed 
point for example 3. The obtained structures' shape is similar 
to the models of sections of foldable trusses [1, 2].

a                                b                                c 

Fig. 24. Charts of generalized coordinate v1(t) of the first link: 
a – v1(t); b – dv1(t)/dt; c – Fv1

a                                b                                c 
 

Fig. 25. Charts of generalized coordinate u1(t) of the first link: 
a – u2(t); b – du2(t)/dt; c – Fu2

a                                b                                c 

Fig. 26. Charts of generalized coordinate v1(t) of the first link: 
a – v2(t); b – dv2(t)/dt; c – Fv2

a                                                     b 

Fig. 27. Certain spatial structures dependent on the time of 
unfolding: a – t=2.6; b – t=5.2

In the figures that show the charts of functions of the 
generalized coordinates, we pay attention to the diagrams of 
force characteristics arising at the time of locking the unfold-
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ing of a structure. To this end, one should analyze values of 
charts of functions

Fu1=m1d2u1(t)dt2; Fv1=m1d2v1(t)dt2;

Fu2=m2d2u2(t)dt2; Fv2=m2d2v2(t)dt2

at the endpoint of the interval of integration t=6.2. After 
computing, the following values are obtained

Fu1(6.2)=2.63; Fv1(6.2)=–1.54; 

Fu2(6.2)=0.63; Fv2(6.2)=–1.24.

The value of these functions at the endpoint of the inter-
val of integration will define the force, which will act on the 
nodal element of a rod structure at the moment of locking 
its unfolding. The reliability of these results can be checked 
after watching computer animated images at the [36] inter-
net site.

5. Discussion of results on the simulation of unfolding in 
the weightlessness of rod structures similar to two-link 

spherical pendulums

Our paper reports the obtained idealized geometric 
models of the unfolding of rod structures similar to dou-
ble spherical pendulums. As the engines for the process of 
unfolding, we propose the pulse pyrotechnic jet engines 
installed at endpoints of links in the rod structure. Pyro-
technic engines are much lighter and cheaper compared 
to other motors. Such engines could be used when the 
unfolding of a structure in orbit should be carried out only 
once, as is often the case. Delivery of pyrotechnic engines 
from Earth into orbit would be economically expedient in 
comparison with electric motors or spring devices with 
thermal memory. 

The advantages of the considered inertial technique of 
unfolding in the weightlessness of the rod structure similar 
to a double spherical pendulum include the following:

– the technology of the inertial technique for unfolding 
the rod structures is not fundamentally critical to the size of 
links in the structure;

– based on the scheme for unfolding a single rod struc-
ture, it is possible to form many-ray schemes with many 
spherical structures with a fixed attachment node;

– there is no need to create and synchronize the means 
of control over the magnitudes of angles at separate nodes of 
a multi-link structure.

The results obtained can be explained by the possibili-
ty of applying the variational principle of Lagrange to the 
calculation of mechanical structures with respect to the 
above-specified features. That allowed us to use the La-
grange equations of the second kind to describe the motion 
of an analog of a double spherical pendulum in weightless-
ness, regardless of the location of links in a rod structure. 

We are aware of the fact that the geometric model of a 
double spherical rod structure in weightlessness requires 
further research to bring it closer to an actual structure. It is 
necessary to take into consideration the moments of inertia 
of rods at the rotation of the structure's elements. The devel-
opment of this direction of research implies the use of other 

variants of double spherical rod structures. Detailed studies 
are also needed into design of a spherical hinge.

The difficulties in the development of research in a given 
direction might arise when solving the inverse problem of 
assembly. That is, given the preset resultant location of a 
pendulum's elements, it would be necessary to define a ratio-
nal set of parameters for a double spherical rod structure and 
initial conditions of its movement, which will enable such 
an unfolding. Additional complexity relates to taking into 
consideration the fact that the inverse problem has several 
solutions.

7. Conclusions

1. The obtained solutions to the Lagrangian systems of 
differential equations of the second kind allowed us to ap-
proximately describe the motion in weightlessness of a rod 
structure similar to a double spherical pendulum. That made 
it possible to implement specific geometric models of the 
unfolding of two-link spherical rod structures and to observe 
them under the mode of computer animation.

2. To simulate the action of a pulse pyrotechnic jet en-
gine, we developed a scheme for initiating the motion of a 
two-link spherical rod structure by the impact from pulses 
to the endpoints of its links. 

The pulse of action on a link of the rod structure will be 
numerically proportional to the value of the first derivative 
from the function that describes a change in the magnitude 
of the respective angle as a generalized coordinate. That al-
lowed us to demonstrate geometric models of action from the 
pulse jet engines as the drivers to the process of unfolding 
two-link rod structures.

3. Using computer animation, we predicted the time-de-
pendent position of links in double spherical rod structures, 
obtained as a result of the inertial unfolding of links apply-
ing the pulse jet engines. That makes it possible to determine 
the current values of angles between the links. An analysis 
of successive animation frames enables determining the mo-
ment of fixation (locking) of the unfolding when the links of 
double spherical rod structures would acquire the required 
spatial position.

4. We propose a technique for determining the param-
eters and initial conditions for the initiation of oscillations 
of a double rod structure in order to obtain a non-chaotic 
cyclic trajectory of the endpoint of the second link. For ex-
ample, choosing initial velocities U0={1, –4.9, –1, 3} at r1=1 
і r2=2 makes it possible to prevent the chaotic movements 
of links in a double spherical rod structure in the process of 
unfolding.

5. Our studies resulted in the construction of the 
time-dependent charts of change in the functions of the 
generalized coordinates, as well as the first and second 
derivatives from these functions; based on this, it was pos-
sible to estimate the force characteristics of the system at 
the time of fixation (locking) the unfolding. The obtained 
phase trajectories of the unfolding process allow us to es-
timate the speed of the structures' elements at the point of 
breaking the unfolding.

6. Quantitative characteristics of the given coordi-
nate-wise graphical construction confirm the computer-an-
imated images of unfolding in weightlessness of certain 
variants of double spherical rod structures.
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