Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://repositsc.nuczu.edu.ua/handle/123456789/11062
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorBoris Pospelov-
dc.contributor.authorRuslan Meleshchenko-
dc.contributor.authorVitalii Asotskyi-
dc.contributor.authorOlena Petukhova-
dc.contributor.authorStella Gornostal-
dc.contributor.authorSerhii Harbuz-
dc.date.accessioned2020-06-25T08:20:20Z-
dc.date.available2020-06-25T08:20:20Z-
dc.date.issued2019-
dc.identifier.citationPUBLISHER OÜ «Scientific Route» European Union Editorial office «EUREKA: Physical Sciences and Engineering»ru_RU
dc.identifier.issnDOI: 10.21303/2461-4262.2019.00981-
dc.identifier.urihttp://repositsc.nuczu.edu.ua/handle/123456789/11062-
dc.description.abstractA self-adjusting method for calculating recurrence diagrams has been developed. The proposed method is aimed at overcoming the metric-threshold uncertainty inherent in the known methods for calculating recurrence diagrams. The method provides invariance to the nature of the measured data, and also allows to display the recurrence of states, adequate to real systems of various fields. A new scientific result consists in the theoretical justification of the method for calculating recurrence diagrams, which is capable of overcoming the existing metric-threshold uncertainty of known methods on the basis of self-adjusting by measurements by improving the topology of the metric space. The topology is improved due to the additional introduction of the scalar product of state vectors into the operation space. This allowed to develop a self-adjusting method for calculating recurrence diagrams with increased accuracy and adequacy of the display of recurrence states of real systems. Moreover, the method has a relatively low computational complexity, providing invariance with respect to the nature of the irregularity of measurements.ru_RU
dc.language.isoenru_RU
dc.publisher«EUREKA: Physics and Engineering» Number 5ru_RU
dc.subjectmetric-threshold uncertainty, recurrence diagram, self-adjusting method, metric, metric space, scalar product of vectors.ru_RU
dc.titleDEVELOPMENT OF A SELF-ADJUSTING METHOD FOR CALCULATING RECURRENT DIAGRAMS IN A SPACE WITH A SCALAR PRODUCTru_RU
dc.typeArticleru_RU
Розташовується у зібраннях:Кафедра пожежної і техногенної безпеки об'єктів та технологій

Файли цього матеріалу:
Файл Опис РозмірФормат 
Harbuz.pdf760,77 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.