Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://repositsc.nuczu.edu.ua/handle/123456789/13872
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Слюсар, Вадим Іванович | - |
dc.contributor.author | Проценко, Михайло Михайлович | - |
dc.contributor.author | Чернуха, Антон Андрійович | - |
dc.contributor.author | Ковальов, Павло Анатолійович | - |
dc.contributor.author | Бородич, Павло Юрійович | - |
dc.contributor.author | Шевченко, Сергій Миколайович | - |
dc.date.accessioned | 2021-11-28T23:32:24Z | - |
dc.date.available | 2021-11-28T23:32:24Z | - |
dc.date.issued | 2021-10-29 | - |
dc.identifier.issn | 1729-3774 | - |
dc.identifier.uri | http://repositsc.nuczu.edu.ua/handle/123456789/13872 | - |
dc.description.abstract | Detection and recognition of objects in images is the main problem to be solved by computer vision systems. As part of solving this problem, the model of object recognition in aerial photographs taken from unmanned aerial vehicles has been improved. A study of object recognition in aerial photographs using deep convolutional neural networks has been carried out. Analysis of possible implementations showed that the AlexNet 2012 model (Canada) trained on the ImageNet image set (China) is most suitable for this problem solution. This model was used as a basic one. The object recognition error for this model with the use of the ImageNet test set of images amounted to 15 %. To solve the problem of improving the effectiveness of object recognition in aerial photographs for 10 classes of images, the final fully connected layer was modified by rejection from 1,000 to 10 neurons and additional two-stage training of the resulting model. Additional training was carried out with a set of images prepared from aerial photographs at stage 1 and with a set of VisDrone 2021 (China) images at stage 2. Optimal training parameters were selected: speed (step) (0.0001), number of epochs (100). As a result, a new model under the proposed name of AlexVisDrone was obtained. The effectiveness of the proposed model was checked with a test set of 100 images for each class (the total number of classes was 10). Accuracy and sensitivity were chosen as the main indicators of the model effectiveness. As a result, an increase in recognition accuracy from 7 % (for images from aerial photographs) to 9 % (for the VisDrone 2021 set) was obtained which has indicated that the choice of neural network architecture and training parameters was correct. The use of the proposed model makes it possible to automate the process of object recognition in aerial photographs. In the future, it is advisable to use this model at ground stations of unmanned aerial vehicle complex control when processing aerial photographs taken from unmanned aerial vehicles, in robotic systems, in video surveillance complexes and when designing unmanned vehicle systems | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | Eastern-European Journal of Enterprise Technologies | ru_RU |
dc.subject | object recognition, deep convolutional neural network, aerial photograph, unmanned aerial vehicle | ru_RU |
dc.title | Improvement of the model of object recogni-tion in aero photographs using deep convolutional neural networks | ru_RU |
dc.type | Article | ru_RU |
Розташовується у зібраннях: | Кафедра пожежної та рятувальної підготовки |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
243094-Текст статті-559091-1-10-20211031.pdf | 1,15 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.