Please use this identifier to cite or link to this item:
http://repositsc.nuczu.edu.ua/handle/123456789/13873
Title: | Construction of an advanced method for recognizing monitored objects by a convolutional neural network using a discrete wavelet transform |
Authors: | Слюсар, Вадим Іванович Проценко, Михайло Михайлович Чернуха, Антон Андрійович Горносталь, Стелла Анатоліївна Рудаков, Сергій Валерійович Шевченко, Сергій Миколайович |
Keywords: | neural network, discrete wavelet transform, monitored objects, unmanned aircraft system |
Issue Date: | 31-Aug-2021 |
Publisher: | Eastern-European Journal of Enterprise Technologies |
Abstract: | The tasks that unmanned aircraft systems solve include the detection of objects and determining their state. This paper reports an analysis of image recognition methods in order to automate the specified process. Based on the analysis, an improved method for recognizing images of monitored objects by a convolutional neural network using a discrete wavelet transform has been devised. Underlying the method is the task of automating image processing in unmanned aircraft systems. The operability of the proposed method was tested using an example of processing an image (aircraft, tanks, helicopters) acquired by the optical system of an unmanned aerial vehicle. A discrete wavelet transform has been used to build a database of objects' wavelet images and train a convolutional neural network based on them. That has made it possible to improve the efficiency of recognition of monitored objects and automate a given process. The effectiveness of the improved method is achieved by preliminary decomposition and approximation of the digital image of the monitored object by a discrete wavelet transform. The stages of a given method include the construction of a database of the wavelet images of images and training a convolutional neural network. The effectiveness of recognizing the monitored objects' images by the improved method was tested on a convolutional neural network, which was trained with images of 300 monitored objects. In this case, the time to make a decision, based on the proposed method, decreased on average from 0.7 to 0.84 s compared with the artificial neural networks ResNet and ConvNets. The method could be used in the information processing systems in unmanned aerial vehicles that monitor objects; in robotic complexes for various purposes; in the video surveillance systems of important objects |
URI: | http://repositsc.nuczu.edu.ua/handle/123456789/13873 |
ISSN: | 1729-3774 |
Appears in Collections: | Кафедра пожежної та рятувальної підготовки |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
238601-Текст статті-549563-1-10-20210831.pdf | 858,35 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.