Please use this identifier to cite or link to this item: http://repositsc.nuczu.edu.ua/handle/123456789/16172
Title: Dielectric Control of Motor Fuel Compounding Plants
Authors: Sater, Nabil Abdel
Grigo, Andrey
Neustroieva, Gelena
Bondarenko, Oleksandr
Matukhno, Vasyl
Вавренюк, Сергій Анатолійович
Keywords: Compounding
Motor fuel
Gasoline
Properties
Octane number
Dielectric constant
Operational control
Additives
Issue Date: 2022
Publisher: Pet Coal
Series/Report no.: 64(3);785-790
Abstract: The article proposes the use of operational dielectric control system to increase the efficiency of operation of automatic compounding of motor fuels. These plants are used at oil refining enterprises in Ukraine and are an integral part of the technological chain of the commercial fuels production. It is established that all the main components and additives used for the production of commercial gasoline brands A-92, A-95 and A-98 have higher values (εmix) than straight run base gasoline. And this, in turn, can be used for operational control of the gasoline compounding process. This control can be carried out on the basis of the information received from capacitive sensors which are located in pipelines of the main material streams. Moreover, the control is carried out on the content of components (X, %) or on the value of the octane number (ON, point) of the mixture on the basis of experimentally obtained dependences 𝜀𝜀mix = 𝑓𝑓(𝑋𝑋) and ОN = 𝑓𝑓(𝜀𝜀mix).
Description: References [1] Astapov VN. Analiticheskiy obzor elektrofizicheskikh kharakteristik uglevodorodnykh zhidkostey i primeneniye ikh v informatsionno-izmeritel'nykh sistemakh dlya kontrolya kachestva topliv. Nauchnoye obozreniye. Tekhnicheskiye nauki, 2016; 5: 5-27. [2] Wu M, Dedong T. The oil product moisture meter based on the electromagnetic resonance. J. Instrument Technique and Sensor, 2008; 4:16-18. [3] Guan L, Feng XL, Li ZC, Lin GM. Determination of octane numbers for clean gasoline using dielectric spectroscopy. Fuel, 2009; 88(8): 1453-1459. [4] Grigorov AB, Karnozhitskiy PV, Naglyuk IS. Izmeneniye dielektricheskoy pronitsayemosti dizel'nykh motornykh masel v ekspluatatsii. Avtomobil'nyy transport, 2007; 20: 95–97. [5] Topliva. Proizvodstvo, primeneniye, svoystva: [Spravochnik] / pod red. T. N. Mitusovoy. – SPb.: TSOP «Professiya», 2012: 416. [6] Dielectric Constant Table. Honeywell, 2011: 51. https://www.honeywellprocess.com/library/marketing/tech-specs/DielectricConstant [7] Dielectric Constants of Liquids. The Engineering Tool Box, 2008. https://www.engineeringtoolbox.com/liquid-dielectric-constants-d_1263.html [8] Speight JG. Handbook of Petroleum Refining. CRC Press, 2017: 789 . [9] Sadeghbeigi R. Fluid Catalytic Cracking: Handbook.-4th Edition. Butterworth-Heinemann. 2020: 392. [10] Oyekan SO. Catalytic Naphtha Reforming Process 1st Edition. - CRC Press. 2018: 378. [11] Karpov SA, Kunashev LKH, Tsarev AV, Kapustin VM. Primeneniye alifaticheskikh spirtov v kachestve ekologicheski chistykh dobavok v avtomobil'nyye benziny. Neftegazovoye delo, 2006: 1-12. http://www.ogbus.ru [12] Eyidogan M, Ozsezen AN, Canakci M, Turkcan A. Impact of alcohol–gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel, 2010; 89(10): 2713- 2720. [13] Poulopoulos S. Influence of MTBE addition into gasoline on automotive exhaust emissions. Atmospheric Environment, 2000; 34(28): 4781-4786. [14] Ehrlich RL, Philbrick KP, Jonas MS. Methyl Tertiary Butyl Ether (MTBE) and Clean Gasoline Alternatives. Report to the Senate Education, Health, and Environmental Affairs Committee and the House Environmental Matters Committee. January 2006. Maryland Department of the Environment Air and Radiation Management Administration. 2006: 74. https://clu in.org/download/contaminantfocus/mtbe/mtbe-MD2-Report_2006.pdf [15] TR TS 013/2011. TEKHNICHESKIY REGLAMENT TAMOZHENNOGO SOYUZA. O trebovaniyakh k avtomobil'nomu i aviatsionnomu benzinu, dizel'nomu i sudovomu toplivu, toplivu dlya re aktivnykh dvigateley i mazutu. Data vvedeniya 31.12.2012. Data aktualizatsii 01.01.2021: 22. [16] Rudnev VA, Boichenko A, Karnozhytskiy PV. Classification of gasoline by octane number and light gas condensate fractions by origin with using dielectric or gas-chromatographic data and chemometrics tools. Talanta, 2011; 84(3): 963-70. [17] Shatokhina YeV. Ekspress-analiz kachestva i ekologicheskoy bezopasnosti motornykh topliv. Khimiya i tekhnologiya topliv i masel, 2007; 3: 46–48. [18] Mamikin AV, Kukla AL, Maystrenko AS, Matsps YeP, Matviyenko LM. Sposob ekspress-otsenki oktanovogo chisla benzina s ispol'zovaniyem portativnogo spektroimpedansnogo izmeritelya i metodov statisticheskogo analiza. Tekhnologiya i konstruirovaniye v elektronnoy promyshlennosti, 2017; 4-5: 52-60
URI: http://repositsc.nuczu.edu.ua/handle/123456789/16172
ISSN: ISSN 1337-7027
Appears in Collections:Кафедра пожежної і техногенної безпеки об'єктів та технологій

Files in This Item:
File Description SizeFormat 
PC-X_Grigorov_212.pdf447,57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.