Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://repositsc.nuczu.edu.ua/handle/123456789/25390
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Бурак, Назарій Євгенович | - |
dc.contributor.author | Хлевной, Олександр Вікторович | - |
dc.contributor.author | Жезло-Хлевна, Наталія Володимирівна | - |
dc.contributor.author | Райта, Діана Анатоліївна | - |
dc.contributor.author | Доценко, Олександр Григорович | - |
dc.date.accessioned | 2025-08-05T10:24:55Z | - |
dc.date.available | 2025-08-05T10:24:55Z | - |
dc.date.issued | 2025-04-26 | - |
dc.identifier.citation | Proceedings 2024 International Scientific Conference «Intelligent Systems of Decision-Making and Problems of Computational Intelligence». Lecture Notes in Data Engineering, Computational Intelligence, and Decision-Making | uk_UA |
dc.identifier.issn | 2367-4512 | - |
dc.identifier.uri | http://repositsc.nuczu.edu.ua/handle/123456789/25390 | - |
dc.description | Determination of fire evacuation parameters in higher education institutions with inclusive groups using machine learning methods. Proceedings 2024 International Scientific Conference «Intelligent Systems of Decision-Making and Problems of Computational Intelligence». Lecture Notes in Data Engineering, Computational Intelligence, and Decision-Making. – Springer Cham, 2025. – Volume 2. – P. 234-247. | uk_UA |
dc.description.abstract | The object of the study is evacuation parameters from institutions of higher education with inclusive education, in particular, speed, flow density and the proportion of participants using crutches and wheelchairs. The relevance of the work is confirmed by the rapid development of inclusive education in Ukraine and abroad. This requires adaptation of existing models for calculating the evacuation duration for use in educational institutions with inclusive education. A way to solve this problem is to present the speed of movement of people during evacuation as a function not only of the flow density, but also of the participants with reduced mobility percentage. In the work machine learning methods, in particular, a linear regression model and an artificial neural network are used to establish the relationship between movement speed, flow density, the proportion of participants using crutches and the proportion of participants moving in wheelchairs. It has been proven that the use of the obtained dependence makes it possible to increase the accuracy of calculating the duration of evacuation from educational institutions with inclusive education by 14%. This makes it possible to use an individual approach in standardizing fire safety requirements for evacuation routes and exits in higher education institutions with inclusive groups | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Springer Cham | uk_UA |
dc.relation.ispartofseries | Volume 2; | - |
dc.subject | machine learning | uk_UA |
dc.subject | linear regression model | uk_UA |
dc.subject | rtificial neural network | uk_UA |
dc.subject | emergency evacuation | uk_UA |
dc.subject | evacuation speed | uk_UA |
dc.subject | flow density | uk_UA |
dc.title | Determination of fire evacuation parameters in higher education institutions with inclusive groups using machine learning methods | uk_UA |
dc.type | Book chapter | uk_UA |
Розташовується у зібраннях: | Науково-дослідний центр нормативно-технічного регулювання |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
burak_LNDECT2024 (1) (2).pdf | Proceedings 2024 International Scientific Conference «Intelligent Systems of Decision-Making and Problems of Computational Intelligence». Lecture Notes in Data Engineering, Computational Intelligence, and Decision-Making. – Springer Cham, 2025. – Volume 2. – P. 234-247. | 1,95 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.